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PREFACE

When the development of the Saturn rocket vehicles began in the late
1950's, the various base heating mishaps of the midfifties were a recent and
painful memory. The chance of a repetition with the large and expensive
Saturns was unacceptable. Radiative transfer is one of the two base heating
mechanisms, and in contrast to its counterpart, the convective transfer, it
cannot be assessed by scale model tests because there are no appropriate
modeling laws. On the other hand, data then available for estimating the
radiative output from the inhomogeneous rocket jets were insufficient for
confident predictions.

To break this impasse, an industry-university-government team was
assembled to plan and execute an effort to collect the available data, to fill
the existing gaps by analytical and experimental research, and to develop the
tools for a sufficiently accurate analytical prediction of the thermal radiation
from given, inhomogeneous masses of hot gases and flames. Besides the
authors and editors of this book, the team included the late Carmine C. Ferriso
of General Dynamics; Richard H. Tourin, Burt Krakow, and Harold J. Babrov
of Warner and Swasey; William Herget, A. G. DeBell, and James Muirhead
of Rocketdyne; and Robert Yossa of Brown Engineering. The team's task was
successfully completed by about 1968.

However, realizing that the results of their work were applicable to
many engineering problems, the nucleus of the team stayed together to compile
this material in a form useful to the engineering community. The result is
this handbook. The editors and authors realize that the book has some short-"
comings of style and form, forced by a shortage of time and funds. Rather
than accepting further delays and jeopardizing publication, they ask the reader -
to bear with these flaws.

The handbook is intended primarily for use by the working design
engineer. In most college engineering courses at the undergraduate or first-
year graduate level, radiative heat transfer is treated in terms of various
limiting cases, such as the transparent gas, the highly opaque gas, or in
terms of a gas whose absorption coefficient is independent of frequency, i.e.,
the so-called '"grey'' gas. It is assumed that the readers have such a back-
ground. While some background in molecular and atomic structure and spec-
tral line emission is desirable, the handbook can be profitably used by engi-
neers without such experience. The mathematical background required is
equivalent to that required for a bachelor's degree in engineering.
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The handbook is primarily addressed to the treatment of radiant
emission and absorption by combustion gases. Typical applications include
rocket combustion chambers and exhausts, turbojet engines and exhausts,
and industrial furnaces. Some mention is made of radiant heat transfer prob-
lems in planetary atmospheres, in stellar atmospheres, and in reentry
plasmas; however, the handbook is not intended as a definitive source book
for such applications. Particular consideration is given to the temperature
range from 500K to 3000K and the pressure range from 0.001 atmosphere to
30 atmospheres. Strong emphasis is given to the combustion products of
hydrocarbon fuels with oxygen, specifically to carbon dioxide, water vapor,
and carbon monoxide. In addition, species such as HF, HC1, CN, OH, and
NO are treated. ' ‘

Chapter 1 introduces the book with a qualitative discussion of molecular
radiators, molecular spectra, and radiative heat transfer in nongrey gases.
A description of the logical procedure which should be followed in evaluating
heat transfer from a given flow system is outlined and guidelines for practical
application of the handbook are given. Subsequent chapters present detailed
discussions of the properties of gaseous radiators and theoretical models for
spectral emission from homogeneous and nonhomogeneous gases. Properties
of most commonly occurring molecules are tabulated and specific computational
models for these molecules are discussed. Emission from particle clouds is
included, and scattering effects in such clouds are brieﬂy reviewed; how-
ever, no attempt is made to present detailed computational techniques for
strongly scattering media since methods of sufficient generality are lacking.
A source bank of data completes the handbook.

Special mention should be made of the key role played by R.M. Huffaker,
MSFC, in the conception and execution of this program. Without his vision and
patient determination, this handbook would not exist. Both research and hand-
book writing were conducted under the guidance of the Marshall Space Flight
Center, with Office of Advanced Research and Technology sponsorship.

Werner K. Dahm ,
Chief, Aerophysics Division
Marshall Space Flight Center
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CHAPTER 1 — INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 PROPERTIES OF GASEOUS RADIATORS

1.1.1 INTRODUCTION

All matter when viewed at the microscopic level consists of atoms or
molecules packed closely together (as in a solid or liquid) or rather sparsely
distributed (as in a gas). Heat can be transferred from one region to another
by one of three processes: convection, conduction, or radiation. In the first
process, the energy transfer simply results from a transfer of heated or energy-
containing matter from one point to another. In conduction, molecular kinetic
energy in the form of vibration, rotation, or simply random translational mo-
tion is transferred from atom to atom or molecule to molecule by exchanges
occurring during direct collisions. The third mechanism, radiative transfer,
is the topic of this handbook. Radiative transfer occurs when a molecule emits
(or absorbs) a train of electromagnetic waves (in the fashion of a radio
transmitter) . These waves transport energy at the speed of light; when they
impinge on some other body, they are either deflected or absorbed, or both.
This interaction is the subject of radiative transfer studies. '

This handbook includes detailed methods and techniques for calculating
the radiative transfer from gases that are representative of common combus-
tion systems. To provide a general background for the detailed analyses pre-
sented in the main part of the handbook, a brief summary of the basic physics
of radiative emission and absorption from molecular gases is given in this
chapter.

In order to understand the basic features of molecular radiative transfer,
it is important to remember two facts. First, radiation is the emission and
transfer of energy by electromagnetic waves. Such waves can be generated only
when electrical charges are accelerated (Fig. 1-1) and the processes can be
thought of an equivalent to the broadcast or reception of radiation by a radio an-
tenna. Most molecules tend to be electrically polarized with positive charges
separated to various extents from the negative charges. As the molecules
rotate or vibrate, these charges are accelerated in a periodic fashion and a
sinusoidal oscillating train. of electromagnetic waves is emitted. The second
feature characterizing molecular radiative transfer is that molecules or atoms
may be thought of as complex, highly resonant harmonic systems. Their in-
ternal structure can be interpreted as having a large number of resonant fre-
guencies. Consequently the frequency distribution or spectrum of the emitted
radiation often consists of a large number of distinct spectral 'lines." It is
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Figure 1-1. Illustration of accelerations giving rise
to electromagnetic radiation.
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this line character of the spectrum of common combustion gases that makes
radiation from molecules much more complex and difficult to treat than that
from solid bodies. Much of this handbook is devoted to techniques for obtaining
useful engineering representations of the average radiative properties of such
spectra.

The next several sections contain a brief summary of the properties
of molecules and molecular radiation that underly the mathematical and numer-
ical formalism that forms the basis of the bulk of the handbook.

1.1.2  THE QUANTUM THEORY DESCRIPTION OF MATTER
All matter is ""quantized'': That is, an atom or molecule can exist in

only one of a number of unique, discrete energy states. Any molecule can be
described by an "‘energy level'' diagram — one for each degree of freedom:

ENERGY LEVELS E,

In the quantum theory description, a molecule exists in one or the other of
these states (actually, one can only say that a molecule has a certain proba-
bility of being in any given state).

The fact that molecules or atoms exist only in discrete energy states
and that the electromagnetic radiation emitted by an excited molecule appears
only in discrete ""chunks'' is the basis for the quantum theory of matter. The
chunks of radiation are called '"photons'' and are simply wave packets of finite
length. The basic observation law of quantum mechanics is that the wave
packets (photons) of electromagnetic energy are "quantized'' and that the
energy of a photon is proportional to its frequency (v): ’

E (photon) = hv (1-1)
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where h is a constant known as Planck's constant (h = 6.625x 10~3 joule
seconds).

When applied to macroscopic systems, quantum theory usually leads to
results very close to the normal theory of mechanics (Newton's laws). Only
when applied to small systems having low energy are quantum effects impor-
tant. There are a few notable exceptions: Superfluidity and superconductivity
are examples of quantum effects on a large scale. The other major area where
quantum effects are important on a macroscopic scale is radiant transfer.

1.1.2.1 Energy Quantization and the Uncertainty Principle

It can be shown that a single wave packet of finite length can be resolved
into a superposition of a number of single frequency plane waves whose fre-
quencies are spread over a frequency interval between w, + y/2 to wy - y/2.
Here vy is inversely proportional to the effective length {'cuherence' length)
of the packet and w; is the mean or center frequency. !

According to quantum theory the energy of a photon is proportional to
its frequency, and if the frequency of a wave packet does not have a precise
value, but is spread over an interval of width v, then neither does the photon
energy have a precise value. -

This imprecision of a quantity such as energy is a basic feature of
quantum mechanics and may be stated in the following fashion. If a photon is
known to occur in (or last for) a certain time interval At , then its energy
cannot be known precisely but only within an uncertainty A E, whose value
obeys:

AEAt = h/27 (1-2)
where h is Planck's constant. For such a photon, AE = hy/2r. Hence,

the line width y must correspond to a lifetime according to y ~ At

1.1.2.2 Energy States in a Harmonic Oscillator

Most molecules vibrate as if the various nuclei were interconnected by
springs (Fig. 1-2). For small amplitude vibrations, the equation of motion
for a simple molecule has the form

1. In this chapter w refers to frequency in radians per sec and vy has units
of sec”!. Later in the book wavenumber units are used.

4
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a. Absorption of a photon by a harmonic oscillator.
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b. Emission of a photon by a harmonic oscillator.

Figure 1-2. Representations of absorption and emission
by a harmonic oscillator.
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d?x
m =5+ k (x-%) = 0 (1-3)
or
X + wpl (x-%) = 0 . (1-4)

Here x; is the equilibrium separation of the nuclei. The total energy of this
oscillator is

E = -é- m(dg/dt)? + kg2/2 (1-5)

or, in terms of the mean square displacement 2—2 :

E = mt.oo-zg_2 (1-6)
where

£ = X- X .

A quantum mechanical analysis of this vibrator shows that the allowed discrete
energy states are equally spaced. In other words, the nth state above the
lowest energy state has an energy (writing h/2r as 4)

En - EO = ’Ifnwo . (1—7)

This equal spacing of energy levels is pretty much what one should
expect since this oscillator, when it radiates, must radiate a wave packet
having a frequency essentially equal to w;. The energy of the emitted photon
is fiw,; and this must be the energy difference between the initial state and
the final state of the molecule.
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Brinal = Finitial * 190 . (1-8)

Therefore, for the transition from a state En+1 to a state En ,
fwy, = E__-E_ . (1-9)

Thus, one must have

E = E+ finw, (1-10)

if the radiating transitions correspond to adjacent energy states.

If transitions can occur between nonadjacent states, '"harmonics' are
emitted:

© hoton = E -E = (m - n)Hw, (1-11)

or

“ hoton ~ (m - n) w,g . , (1-12)

These harmonics are exactly analogous to harmonics in mechanical
systems and result from nonlinearities in the spring constants (they can result
also from electrical nonlinearities) .

However, for small amplitudes and linear spring constants, the har-
monic distortion is negligible, and radiation is emitted only as a result of a
transition from one energy state to one immediately adjacent. Thus, there is
a "selection rule' that in a '"radiative'' transition the ""quantum'' number n can
change by only one unit:

An = 1 . (1-13)
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If n decreases, the molecular energy is reduced and a photon is
emitted. If n increases, the molecule gains energy by absorption of a photon
from the radiation field ( Fig. 1-2).

1.1.3 INTENSITY AND SPECTRA

Consider a plane electromagnetic wave packet traveling in the x direc-
tion. One wants to calculate the flux of power passing through a unit area in a

plane perpendicular to the x axis. The power flux s (watts/cm?) is given by
the well known expression? "

—_—

— — — — k

S =E x B/u = (IEIz/[.Lc)-E - (1-14)
> I-Ezl _ 9 '

[s] = e |E| (1-15)

—

Here S is the so-called Poynting vector, E and B are the electric and
magnetic fields, ¢ and p the electric permittivity and maghetic permeability

of the medium, c the velocity of light (¢ = 1/Nue) and k the wave vector

(1’1‘£| = 2m/A). The mean (time-averaged) magnitude of S is called the inten-
sity of the wave:

I=celE* . (1-16)

Suppose the wavetrain is really a sequence of a number of individual
packets as shown below:

MWWWWMW

= -

2. See any text book on electromagnetic theory, for example, J. A. Stratton,
Electromegnetic Theory, McGraw-Hill, 1941.
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The intensity is the time-averaged value of the power flux |S}]:

1 T/2 =2 |
1= J ce |E|%d . (1-17)
-T/2

Since the electric field is a function of the difference (x - ct) , one can average
over either x or t:

cT/2

I= -zl;f— ce | E|%dx . ' (1-18)
-cT/2

For the averaging distance c¢T much longer than the length of a packet and
larger than the average space between packets (d) , the intensity is given by

o] (es]
I = L(E_’_E [ ce |El"ax = n [ ce I'E |* dx (1-19)
cT \ d e s
one packet

where n is the number of packets per meter. -
In order to describe the spectral distribution of the radiation, one needs

to evaluate the power in the spectral interval w to w + dw, i.e., the spectral
intensity Iw (watts/m?-sec™!) multiplied by dw. Clearly,

1= | I, do . o (1-20)

It is common to consider frequency only as positive. One can write this
equation as
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I = ‘7 (I +1 ) dw ‘ (1-21)
0

andcall I' =1 +1 the net spectral intensity.
w w -—w

It is appropriate now to write E(t) in terms of its Fourier components

e(w):

[e0) .
it ,
E(t) = [ elo) ot o (1-22)
. ~0 N 2T
To relate the spectral intensity Iw to the Fourier components e(w), one

proceeds as follows. After substituting for |[E(t)]| 2 in the expression for the
total intensity I, one obtains ’

@ os) _ © . .
I = nce. f{ f M e wu/c dw f Eﬂ_‘-‘i_l elw u/c dw! }du
-0 -0 -0

N 2m N 2w
nce o 7 p in(w' - w)/c
= 5= f f e(w) e*(w) f e du| dw' dw .
m -0 -0 Q0
(1-23)
' —
Since the term in square brackets is simply the delta function & (w—c(ﬂ) ,
one may write
ncle |
- = 2 -
I = = ‘£ le(w)|? dw . (1-24)

Thus, one can write an expression for a spectral intensity, Iw

10
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nce 5
1= 32 le(w)! . (1-25)

For example, for an exponentially decaying oscillator,

-yt
E = Eoe Y /2 (605 (J.)Ot (1_26)

L L + 1 . (1-217)

2N 21 321 + i(w - wy) 12’-+ i(w+ wg)

e(w) =<

Now in almost all cases of interest in practical heat transfer applications, the
damping rate y is very much smaller than the characteristic frequency wg.
Thus e(w) is small except for w relatively near w,. The term with w + w,
is then small compared to that with w - w, and, approximately,

e(w) « —> L i (1-28)

2N 27 32£+i(w - wy)

The frequency variation of the spectral intensity Iw , then, has a simple bell-
shaped form

2 1 1
o = n;we (E?) 2 9 . (1-29)
Lo+ (w - wp)
4
10
Y
051+
|
|
0 1. >
wgq w

11
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Here y measures the width of the spectral interval around wy that contains
appreciable power. If a material has many different characteristic frequencies
( @, ), the intensity of the emitted radiation may have the form illustrated in

i

Figure 1-3.

Figure 1-3. Spectrum of emitted radiation.

1.1.3.1 Types of Spectra

The basic phenomena determining the spectrum of the radiation emitted
from a volume of gas are the following.

By random molecular motions, some natural modes (oscillatory or
rotary) of the material are excited. These excitations occur at random times.

As soon as this degree of freedom is excited, it begins to lose energy by
radiative loss and the amplitude decays exponentially.

In some cases the excitation of an oscillatory mode can be stimulated
by the electromagnetic field radiated from some other region of space — this

is absorption of radiation.

The properties of the emission and absorption are very much deter-
mined by the shape of the spectrum. Three general types of spectra occur:

a. Separated Spectral Lines:

lw /\A/\ A A

i2
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Such spectra are characteristic of low pressure flames, planetary atmos-
pheres, stars, electric arcs, discharges, and high temperature plasmas.

b. Partially Overlapping Spectral Lines:

These spectra are characteristic of flames, combustion zones, planetary
atmospheres, and moderate-to-high pressure gases.

c. Strongly Overlapping Lines:

These spectra exhibit no strong spectral feature or colors. They are charac-
teristic of the emission from solids, liquids, and very high pressure gases.

13
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1.2 STRUCTURE OF A SINGLE SPECTRAL LINE

An individual spectral line may be characterized by a width, height, or
area, and a shape. Three effects are commonly important for determining the
width and shape of a spectral line: (a) the translational motion of the molecule,
(b) collisions with other molecules,. and (c¢) the finite radiative lifetime.

1.2.1 DOPPLER LINE BROADENING

The random motion of a molecule in a gas gives rise to positive or
negative Doppler frequency shifts. When the emission is observed from a gas
containing many molecules, the molecules moving toward the observer will
appear to have slightly increased frequency of emission and those moving away
from the observer will seem to have a lower frequency. The probable number
of molecules having a velocity between v and v + dv is given by the expres-
sion : :

- 2
N(v)dv = /k—T- e Y /kT dv , (1-30)
mm

where k is the Boltzmann constant and T is the kinetic temperaturé of the
gas. The Doppler shift caused by the motion of the molecule toward the observer,
with velocity v, is given by

Aw Af \4
=T = } (1-31)

where w 1is the average frequency of the transition and c is the velocity of
light. Thus the probability that the emission will occur in a spectral interval
between wave number w and w + dw is given by the expression

NPRY 2
. (w - wy)?1n 2/yD

where the Doppler half-width (displacement from w, at haif—height) is given
by

Yy = ﬂcﬂ- NKT 1In 2/m . ? (1-32)

14
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1.2.2 NATURAL LIFETIME LINE BROADENING

The second effect that gives rise to a finite width for the line is the
so-called "natural lifetime'' broadening. This effect is most easily understood
by considering the problem of a free classical oscillator which radiates and
whose oscillation amplitude decreases as a result of the energy radiated. If
one supposes that the time for the amplitude of the oscillation to fall by a fac-
tor e-! = 0.368 is T, then one may write an expression for the amplitude
for the radiative wave: '

i

27T gin (wet) . | (1-33)

In the last section, it was shown that the absolute square of the Fourier
transform of this amplitude is proportional to the power radiated per unit
frequency interval. This power spectrum provides a fundamental limit to the
possible sharpness of a spectral line and has the form:

constant
(w-wy)2+71"

2 L]
1.2.3 COLLISIONAL LINE BROADENING

The third mechanism that gives finite width to a spectral line is that
caused by random collisions between molecules. Suppose that there are a
number of molecules in a gas volume which are radiating at a finite rate. For
the purpose of this example, assume that their natural radiative lifetime is
very long. During the time the molecule radiates, it undergoes random colli-
sions with other molecules. As a result of these collisions, the wavetrain
that is being emitted tends to be disrupted. As a rough approximation, a
collision can be conveniently described as producing a discontinuous change in
the phase of the oscillator at the time of the collision. Because of the occa-
sional disruption of the wavetrain at each collision, this wavetrain cannot be
characterized by a single frequency but must be represented in terms of a
collection of frequencies which are centered about the characteristic oscilla-
tion frequency. Fourier analysis of such a spectrum yields a power spectrum
of the following form

constant
2
w - w + T
(@~ w)?+r

-2

15
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where Te is the mean time between phase-disrupting collisions. It is interest-

ing to note that the line shape resulting from collision broadening is of identical
form to that for natural line broadening, although the mechanisms involved are
quite different. The time between effective collisions To is usually related to

the time between collisions that are sufficiently strong to change the direction
and momentum of the two colliding molecules. However, this relation is only
qualitative and, in general, it is necessary to measure the spectral line width
directly. Two facts about the widths of collision broadened lines should be
remembered. First, the widths at pressures and temperatures of interest
for combustion problems tend to be very small compared to the width of the
entire spectrum. This latter width is conveniently represented as the half-
width of the Planck function (see Chapter 2) which at a temperature of 2000K
is of the order of 3000 cm™~!. Indeed, the widths of the lines are so small that
it is often difficult to get a direct measurement of the line width, even with
very good high-resolution infrared instruments, so indirect techniques are
usually required. It is primarily the fact that these line widths are very much
smaller than the spectral interval that leads to the great computational
difficulties in computing the radiative transfer.

A precise numerical evaluation of the emission would require evaluating
the emission at wavelength intervals separated by a small fraction of a spec-
tral line width., In a typical case (e.g., water vapor), it would be necessary
to carry out the computation of the emission at between 4000 and 400 000
different frequencies. Since each evaluation of a particular frequency requires
a separate integration over the line of sight, such a direct calculation technique
is warranted only under most extreme circumstances and for most heat trans-
fer problems cannot be tolerated. Much of the effort in the past several years
in the field of radiative heat transfer has been devoted to developing approxi-
mate techniques for eliminating the necessity of carrying out this detailed
frequency evaluation and integration. The result of this effort has been the
development of the so-called ""band model'' techniques and these form the base
for the prediction procedures to be described in the following chapters.

16
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CHAPTER 2

BASIC PRINCIPLES

A survey of the basic concepts and expressions that are required for
the proper understanding of the procedures and techniques which are devel-
oped later is given here.

Section 2.1 is a review of the basic principles of radiant transfer:
radiation from black and nonblack bodies, and the equations for radiant heat
transfer.

Section 2.2 is a study of the types and properties of isolated spectral
lines, a necessary background for the later study of band models.

Section 2.3 is a descriptive review of the spectra of molecular gases:
their spectral structure and strength of the bands and individual lines.

Section 2.4 summarizes the dependence of line width on pressure and
temperature and presents the methods used for adjusting the line width for

these effects.

Section 2.5 considers the spectral properties of particulate matter —
both absorption and scattering.

17
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2.1 RADIATIVE TRANSFER

2.1.1 NOMENCLATURE

The system of symbols and nomenclature for radiometric quantities
adopted by the Working Group on Infrared Backgrounds [2-1] is used in this
discussion. Reference 2-1 may be consulted for a comparison of this system
with other systems of nomenclature. A nomenclature for some of the quanti-
ties which will be discussed in this section is given as Table 2-1. The
following abbreviations for units of measure will be used in this discussion:

cm centimeters

-1
cm wavenumbers
K degrees Kelvin

The values of several physical constants of basic interest to infrared radia-
tion are listed in Table 2-2.

2 2.1.2 BLACKBODY

A blackbody is defined as a body whose surface absorbs all incident
radiation. The absorption and emission characteristics of such a body
depend on the temperature T of the surface and not on its chemical and
physical states. The spectral distribution of radiant power emitted by the
surface of a blackbody at temperature T into a solid angle of 27 steradians
(the "blackbody spectral radiant emittance) is given by the Planck function
[2-1] (values are given in Table A 2-1) ’

3
0w _ Cyw Jom? -1 -
Ww( , T) exp(ng/T)—i watts/cm® em (2-1)
or
' cA”
0 A — 1 2_ -
W, (2, T) oxp(C, /A T) -1 watts /cm?-cm , (2-2)

where Cy and C, are the first and second radiation constants (Table 2-2) .

18
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NOMENCLATURE OF INFRARED

RADIOMETRIC QUANTITIES

Property

Symbol

Equation
No.

Description

Spectrometer
Slit Function

g(w',w)

Instrument response to
radiation of wavenumber
w! when set at wave-
number w , normalized
so that

fg(w',w)dw' = 1.

Absorption
Coefficient

k(w,T)

2-14

Coefficient of propor-
tionality between the
decay of spectral
radiance and its optical
path (Beer's Law).

Mean
Absorption
Coefficient

®(w,T)?®

An average value of
the absorption
coefficient k(w, T)
taken over an interval
centered at w such
as to smooth out the
fine structure in
k(w,T).

Radiance

N(T)

2-5

Power radiated per
unit solid angle per
unit projected area.

Spectral
Radiance

Nw(w,T)

Spectral distribution of
radiance (g.v.) with
respect to wavenumber
(also referred to as
"intensity'' in the radi-
ation transfer litera-
ture).

Line Strength

2-23

Wavenumber integral
of absorption coeffi-
cient of a spectral line.

19
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TABLE 2-1. (Continued)

Equation
Property Symbol No. Description
Equivalent W 2-24 Wavenumber integral
Width of absorptivity of a
: spectral line.
Radiant W(T) 2-3 Power radiated into a
Emittance solid angle of 2r
radians per unit area
of a surface at tem-
perature T .
Spectral W (w,T) Spectral distribution
Radiant @ A - of radiant emittance
Emittance [WX(X,T) :I (d.v.) per unit
wavenumber [ wave-
length] interval.
Blackbody W Yw,T) 2-1 Spectral distribution
Spectral @ of radiant emittance
Radiant ,:W}\O(A, T) ] [2-21 | of a blackbody per
Emittance unit wavenumber
[ wavelength] interval,
Spectral a(w,T) 2-12 The fraction of the
Absorptivity radiant energy of
wavenumber w inci-
dent upon a body which
is absorbed by it.
Half-width v Wavenumber interval
between the wave-
number of the line
center and the wave-
number at which the
absorption coefficient
is one-half of its value
at the line center.

20
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TABLE 2-1. (Concluded)

Equation
Property Symbol No. Description

Spectral e(w,T) 2-11 The ratio of spectral

Emissivity radiance of a body to
the spectral radiance
of a blackbody at the
same temperature.

Mean Emissivity | €(w,T)? An average value of

- [Mean o (w,T)]a emissivity [absorp-

Absorptivity ] tivity, transmissivityl

[ Mean [T(w,T)] & taken over an interval

Transmissivity ] centered at w such
as to smooth out the
fine structure in
elw,7] .

Total €p (T) 3-12 Ratio of the radiance

Emissivity of a body at tempera-
ture T to that of a
blackbody at the same
temperature.

Transmissivity 7(w,T) 2-13 The fraction of the
radiant energy of
vavenumber w
incident upon a body
which is transmitted
by it.

Wavenumber of w 2-9 Value of w for which

Maximum Black~-
body Spectral
Radiance

0 .
W (w,T) is a

maximum.

a.

The bar to indicate averaging over a spectral interval is often omitted in
the discussion of band models and experimental data when it is not
required for clarity.

21




CHAPTER 2 — BASIC PRINCIPLES

TABLE 2-2. VALUES OF SELECTED PHYSICAL CONSTANTS

Name Symbol Valuea

Planck Constant h 6.6256 X 10~% erg-sec

Speed of Light C 2.997925 x 101 ¢m sec—!

in Vacuum

Boltzmann k 1.38054 x 10~16 grgk~!

Constant

First Radiation C; | 27he? = 3.7405 x 10712 watts cm?®

Constant

Second Radiation C, he/k = 1.43879 cmK

Constant
21{471'5 -19 . —

Stefan-Boltzmann o TarsT = 95.6697 X 107 “watts cm™2%K
15h°c

Constant

a. Values recommended by NAS-NRC Committee on Fundamental Constants.
See NBS Technical News Bulletin, October 1963.

2.1.3 RADIANT EMITTANCE

The power emitted per unit area into a solid angle of 27 steradians »
and per unit wavenumber interval at a wavenumber ® is the "spectral radi-
ant emittance" Ww (w, T) . The total power emitted per unit area into a

solid angle of 27 steradians is called the "radiant emittance, " and is found
by integration of equation (2-1) over all @ to be

W(T)= [ W_(w,T)dw . | (2-3)
0

If the emitting surface is a blackbody, the radiant emittance W(T) becomes

22
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[ee]

w(T)= [ W (0,Tdw = o4 , (2-4)
0

where o is the Stefan-Boltzmann constant (Table 2-2) . Functions for evalu-
ating the integral in equation ( 2-4) are given in Table A2-1.

2.1.4 RADIANCE

Radiance N is defined as the power radiated from a surface in a given
direction per unit solid angle Q per unit projected area; symbolically,

1 5
N=2C% 22 W (2-5)

where 0 is the angle between the normal to the surface and the direction
under consideration. Equation (2-5) is expressed more properly as

chosGdQ =W . (2-6)
2T

For an isotropic emitter (N independent of angle) such as a blackbody, the

integral f cos 0 dQ2 leads to
T

n=tw . (2-7)

2.1.4.1 Spectral Radiance

The spectral radiance Nw and the spectral radiant emittance Ww

are related by equations identical to equations (2-5), (2 -8), and (2-7) in
which N and W are replaced by Nw and Ww , respectively.
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2.1.4.1.1 Maximum Blackbody Spectral Radiance

The maximum value of the blackbody spectral emittance W ?, at a given
: w

temperature, is obtained from equation (2-1) by setting ( 8Ww°/ w )= 0.

The corresponding wavenumber is

w = 1,961 T . (2-8)
m

Similarly, the wavelength Am (cm) corresponding to maximum

emittance W)\o is obtained from equation (2-9):

i
m  3.451 T

. | (2-9) |

Note that the spectral radiance per unit wavenumber Wwo has a maximum

at a different wavelength than the spectral radiance per unit wavelength
WAO « Thus for T = 300K, Ww0 is a maximum at w = 588 ecm~!, while

Wk0 is 2 maximum at A = 9.66 x 10-4 cm=9.,66 4, or w= 1035 cm-1 .

Expressions for the maximum blackbody spectral radiance are
obtained by substituting the values for the spectral location of the maximum
in the Planck function. The results are

W= 1.785x 1012 T3 watts/cm?-cm™! (2-10)
w

from equations (2-1) and (2-8), and

W, = 12.86 x 10 16 5 watts/cm?- (2-102a)
m

from equations (2-2) and (2-9).
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2.1.4.2 Spectral Emissivity

The ratio of the spectral radiance of any real body to the spectral
radiance of a blackbody at the same temperature is defined as the spectral
emissivity:

e(w) = N _(&,T) /Nwo(w, T) . (2-11)

2.1.4.3 , Spectrval Absorptivity

The spectral absorptivity a(w) is-defined as the fraction of the
radiant energy of wavenumber « incident upon the body which is absorbed
by it. Kirchhoff's law states that under conditions of thermal equilibrium,
the emissivity and the absorptivity are equal:

a(w) = e(w) . (2-12)

2.1.4.4 Spectral Reflectivity

The spectral reflectivity r(w) is defined as the fraction of the radiant
energy of wavenumber incident upon a body which is reflected at its
surface. )

2.1.4.5 Spectral Transmissivity

When the surface is not totally opaque, its absorption and reflection
do not account for all the energy received, as a fraction of this energy crosses
the surface and penetrates into the second medium. The spectral transmis-
sivity 7(w) is denoted by the fraction:

rw) = 1-a(w) - r(w) . (2-13)

Note that, in general, €, &, T, and 7 depend on the angle between the
light path and the normal to the surface.
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2.1.5 ABSORPTION COEFFICIENT

Consider a straight-line path'in the direction" L thi'ough the radiating
medium from an arbitrary origin. Let s denote the position of a point M on
this path and p(s) the local density at M . At a given wavenumber w ,
an absorption coefficient k is defined such that the spectral radiance
absorbed by the small segment As around M is given by

ANw(w,s) = -k(w,s)p(s)Nw(w,s)As . (2-14)

Equation (2-14) is a statement of the fundamental law of radiation
transfer, variously credited to Bouguer, Lambert, or Beer. It is a phenom-
enological statement of proportionality and serves, therefore, as a defmltxon
for the absorption coefficient k given in units reciprocal to those of
p(s)As . .

2.1.6 EQUATION OF TRANSFER IN NONSCATTERING MEDIA
(IN LOCAL THERMODYNAMIC EQUILIBRIUM)

The differential equation for the spectral radiance as a function of-

8Nw( w, s)

™ = k(w,8)p(s)N_(w,8) + k(w,8)p(s)N *(w,8) , (2-15)

where N (w,s), and k(w,s) mean N [w,T(s)] and k[w,T (s)] .
2.1.7 SPECTRAL RADIANCE OF AN EXTENDED MEDIUM
The solution of this equation of transfer is given by

s S '
Nw(w,s) = f Nwo(w,s')exp - f k(w,s'")p(s'")ds'" |k(w, s")p(s')ds"'

— 1
® S (2-16)
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when the medium extends to infinity in the direction opposite to L . If the
radiating medium does not extend to -« but, say, to a point a, this lower

limit may be replaced with the appropriate value s =a . If the medium is
bounded by walls,

1

| . | |
Nw(w,s) e Nw(w,a)exp |:— f k(w,s')p(s')ds']
a
S S
+ [ N (w,s)exp -f' k(w,s")p(s")ds"| k(w,s')p(s")ds’
a . '8

. (2-17)
where Nw(w, a) is the wall radiance.

2.1.8 TRANSMISSIVITY
The transmissivity of the volume between s and s' is defined as
S'

S
T(ws',s) = exp [ —f k(w,s")p(s")ds":l , (2-18)

while its absorptivity in the absence of any reflective interface [equation
(2-13)] is

. S
a(wss',s) = 1 - exp [- f k(w,S")p(s”)ds”] . (2-19)

S'

The transmissivity 7 [ equation(2-18)] can be introduced into equation (2-17):
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< |
N (w,8) = N (w,a)(wa,s) + f Nwo(w,s7)7(w;s',s)k(w,s')p(s')ds'.,
a
(2-20)
or
S 9
N,(@8) = N (0,2)7(w5a,5) + [ N w,s) e T (@38',8)ds’ .
a
(2-21)
or
S 5
N (w,8) = [ N "(w,s’ Far T(wss',5)ds’ , (2-22)
-0

if the radiating medium extends to infinity in the negative direction.
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2.2 LINE RADIATION

2.2.1 HOMOGENEOUS MEDIA

Radiation which is emitted by molecular gases in the infrared region
characteristically has a line structure, resulting from transitions which take
place between discrete energy levels in the molecules.

This section is concerned with emission from gases whose physical
properties (temperature, composition, pressure) are uniform throughout.

2.2.1.1 Line Strength

The spectral contour of a particular line is defined by an absorption
coefficient k(w) . The line strength S is defined as:

s = [k(w)dw ) (2-23)

2.2.1.2 Line Width

In Section 1.2 the structure of a single line was discussed. Once the
line strength is known, as well as its kind of broadening (Doppler or collision),
Section 1.1.3 shows that the additional knowledge of the parameter vy (the
line half-width) specifies the line contour completely. A combined Doppler-
collision broadening can be similarly calculated through existing tables on the
basis of the knowledge of y, and v (Section 2.2.1.3.3).

2.2.1.3 Equivalent Width

The equivalent width of a line is defined as the wavenumber integral
of the spectral absorptivity
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W = f o(w)dw = f{i - exp[-k (w)ul}dw . (2-24)

The symbol W is a standard one for denoting equivalent width (units of
cm™!) and should not be confused with the symbol W(T) denoting radiant
emittance (units of watts cm=2). Equation (2-24) illustrates the fact that
W is the frequency interval which one would have to make totally absorbing
(black) to produce the same absorption as a (w) over the whole spectrum,
hence the name '"equivalent width." The curve defined by W as a function
of pathlength is known as the ""curve of growth,"

2.2.1.3.1 Equivalent Width for Collision Broadened Lines
Many theories have been advanced to describe the shape of a collision

broadened line; the simplest of these yields the so-called Lorentz shape for
the line contour (which, in general, is quite well verified experimentally) :

Sy i

k(w) =

In this expression, S represents the line strength [equation (2-23)] and vy
represents the half-width at half-height. The half-width depends on the
partial pressure of the gas mixture:

Y = Z Yo Py ) (2-26)
i i

where pi is the partial pressure of the components of the gas and Yo is
i
the corresponding line half-width parameter. It will be seen in Section
2.2.1.6 that Yo depends on temperature as well.
i

The equivalent width W of a Lorentz line, which was defined by
equation (2-24) to be the integral of the absorptivity of this line (and of this
line only) over the whole frequency interval, is given by References 2-2 and
2-3:
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W = 2wy f(x) , (2-27)

il

where
x = Su/2my
and f(x) is the Ladenburg-Reiche funct{on shown in Chapter 3 (Fig. 3-2):

f(x) = xexp(-x?[lo(x) + L(x)1 (2-28)

)

in which I, and I; are modified Bessel functions. (See Appendix 2-A for
table of f(x) , series representations, and approximation formulas. )

2.2.1.3.2 Equivalent width for Doppler Broadened Lines

The contour of a Doppler line of intensity S centered at wj is given
by References 2-2 and 2-3:

k(w) = kyexp [— (w - wy?(ln 2)/3/])-"] , (2-29)

where

i
b = Klwg = (/v [(n2)/m"

and where D is the Doppler half-width (i.e., the half-width at half-height) :
Y
Yp = [ 2kT (In 2) /mc?] 2 w, , | (2-30)

where m is the molecular mass, Or, numerically,
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1 .
Yp = 0.3581 x 10~¢ w (T/M) 72 , (2-31)

where M is the molecular weight in unified atomic mass units, T is
in K, and D and w are in the same units.

The equivalent width is
S ' .
W = = D (ko) , (2-32)
kg

where

— "1/2 . 2
D(y) = 7 [ {1 - exp[- yexp (- £)]}at . (2-33)

The integration cannot be performed directly. Various series forms have
been developed, and tabulated values are available. A graph of D(y) is

given in Chapter 3 (Fig. 3-7) and series expansions are given in Appendix
2-B.

For long pathlengths it is usually necessary to consider the effect of
the Lorentz component of the line shape. (See Section 2.2.1.3.3.)

Several approximate forms for W , and their error limits, are
presented in Appendix 2-B.

2,2.1.3.3 Equivalent Width for Combined Doppler-Lorentz (Voight) Lines
In the intermediate range in which both the Doppler and the Lorentz

components are important, the line shape is usually defined as a convolution
of the Doppler and Lorentz components (Fig. 2-1):

1/ ©
Sa In 2 2 exp( - y2)
k = — [ == -
(w) ( ) f (2-34)

d
2 - 7 4y s
D i —00 ar (§ y)
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where

)
|

7
(In 22 v/vy
7
£ = (In2)? (w0 - wy) /vy ,

and y is a dummy variable. Numerous series expansions for equation
(2-34) have been developed. For example, see pp. 45-54 of Reference 2-4.

:

o 1 2 3 4 s 6 7 8 9 10 11 12

o T Y T T T T T T T T T

-log H (a, £}

Figure 2-1. The function

a [ __ex(-y?)
H(a,8) = 7 J 2+ (E-y) dy

for various values of the collision-Doppler ratio a [ equation (2-34)].

No convenient algebraic forms are available for the equivalent width
of a combined Doppler-Lorentz line. Tables and graphs are available (see
pp. 55-59 of Reference 2-4).

33



CHAPTER 2 — BASIC PRINCIPLES

2.2,2 INHOMOGENEOUS MEDIA

In the general case where the temperature, pressure, and absorber
concentration vary along the line of sight, the expression for line spectral
radiance obtained from the integration of the spectral radiance Nw

[equation (2-20)] over the line spectral interval Aw is:

I

N(s) / N_(@,8)dw
Aw

S .
= f f Nwo(w,s') exp | - fs k(w,s")p(s")ds"|k(w,s")p(s")ds'dw ,
Aw - s'
(2-35)
or, equivalently,
o 9
N(s) = f f Nw Nw,s" ' T(w;s', s)ds' dw s (2~36)

Aw -

where Aw refers to the spectral interval over which the line radiates.
If the line is thin, i.e., 7(w;s',s) = 1 for all w and s', then

S

N(s) = f f N %w,s') k(w,s')p(s')ds' dw , (2-37)
Aw - @
or,
s
N(s) = f Nw Ywy,s') S(s')p (d')ds' ) (2-38)

where w, is the wavenumber at the line center.
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If the temperature is approximately constant along the line of sight
(although the pressure and concentration may vary),

S S
~ 0
N(s)~ [ N %w, Ty [ exp | - [ klw,s"p(s')ds"
Aw -0 s!

x k(w,s') p(s') ds' dw = f Nwo(w,TO)[i - 7(w,s)] dw
Aw

~ Nwo(wo, To) W (s) , (2-39)

where W(s) is the equivalent width of the line [equation (2-27)1:

S

W(s) = f 1 - exp - f k(w,s')p(s') ds' dw
Aw -®
2.2.2.1 A Two-Parameter Approximation for Low Resolution

Curves of Growth

The Curtis-Godson approximation in its basic form represents the
equivalent width of a single line along an inhomogeneous path (along which
the line strength S and half-width y may vary) in terms of the equivalent
width of a single line for a homogeneous path using an appropriately defined
effective strength Se and half-width Ve *

The effective strength and half-width are defined by the condition of
4 simultaneous matching of the equivalent widths for large and small values of
the optical path. Consider the case of a path through several isothermal slabs.
For a single Lorentz line described by Si and s in region i of thickness

u, the equivalent Se and Y are defined by

S, = Z siui/z w o (2-40)
1 1

35



CHAPTER 2 — BASIC PRINCIPLES

and
= 9-4
Ye Z}; 5;7Y / ) S;% ; (2-41)

and the approximate equivalent width is given by the Curtis-Godson approxi-
mation:

W = 27T'yef(Seu/27r'ye) , (2-42)

where u = Z u, . This prescription is exact in certain limiting cases (when
i

absorption at the line center is either very weak or very strong) . In other

cases, some error results. The Curtis-Godson approximation is also applied

to band models, in addition to single lines, and is discussed in detail in

Chapter 4.
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2.3 MOLECULAR EMISSION

Vibrational band systems appear in the infrared region as a result of
a change in electric dipole moment between two vibrational states. In
general, a diatomic molecule with a center of symmetry (e.g., Ny, 0O,) has
a zero dipole moment in all vibrational states, and hence has a zero band
strength. (The weak O, band system in the near infrared results from an
electronic transition.) In the case of centrally symmetric polyatomic
molecules (e.g., CO,), some transitions are excluded by symmetry consider-
ations, while others are not. A brief review of molecular structure is given
in Section 2.3.1.

An idealized representation of a diatomic molecule as a harmonic
oscillator (i.e., a linear spring-point mass model with a dipole moment
also linear in the nuclear displacement) predicts the existence of vibrational
transitions in which the vibrational quantum number changes by unity (the
"fundamental' system). Consideration of various nonlinearities explains
the observed existence of generally much weaker higher-order ('"overtone')
transitions in which the change in vibrational quantum number is an integer
greater than unity.

The strength of these bands can be expressed in various equivalent
ways. Quantum-mechanically, the dipole moment matrix element,

f Y M3y'dx, is a logical parameter. An experimentalist might prefer to

define a band strength as an integral of the absorption coefficient over the
spectral region in which absorption occurs. An alternative scheme is to
describe the strength of absorption in terms of the absorption of a free elec-
tron oscillating at the vibrational frequency (the '"f-number"). The inter-
relationships of these quantities are summarized in Section 2.3.2.

It is frequently necessary to subscript or otherwise identify the
particular transitions to which these parameters refer. The term "band" is
used here to refer to a particular vibrational transition v — v' ; whereas,
the term "band system' refers to the set of all vibrational transitions in
which the quantum numbers change by the same amount. This distinction,
which may be unimportant at low temperatures, becomes quite significant
at high temperatures. Line and band strengths for various molecules are
discussed in Section 2. 3. 3.
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2.3.1 MOLECULAR STRUCTURE

2.3.1.1 Diatomic Molecules

A diatomic molecule can be rather well represented in a semiclassical
picture as a rotating pair of masses joined by a spring. There is some degree
of interaction between the vibrational and rotational motion. This inter-
action will be discussed later; these motions will first be considered separately.

The molecule may rotate around an axis perpendicular to the molec-
ular axis (i.e., the axis through the two nuclei). The kinetic energy of
rotation is expressed in wavenumber units by

T, = Er/hc = BJ(@ + 1) , (2-43)

where B is the rotational constant (=h/87° cI , where I is the moment of
inertia), and the rotational quantum number J may assume the values
0, 1, 2, ...

To the extent to which the molecule rotates as a rigid body, B is
constant. However, effects of nonrigidity, such as centrifugal stretching
and vibrational motion, cause deviations from equation (2-43). These effects
are usually accounted for by replacing the constant B by a multiple power

series expansion in J(J+1) and (v +‘§-> , where v is the vibrational
quantum number. [See equation (2-45).]
If the vibrational motion is analyzed by representing the molecule as

a harmonic oscillator (i.e., a linear spring and point mass model), the
vibrational energy levels in units of cm ™! are given by

T = E /hc = Wy <v + l) , (2-44)
v v 2

where w; is the oscillator frequency (in em™1) .

The assumption of a quadratic potential well is usually quite good near
the minimum. However, with increasing vibrational quantum number, it
becomes progressively poorer (Fig. 2-2). The energy levels are usually

C 1
represented by a power series in | v + 3 ) -
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Figure 2-2. Potential curve of the molecule (anharmonic oscillator).

(The full curve is drawn for the ground state of HCl. The broken-line and the

dotted curves are the ordinary and the cubic parabola, respectively, that form
the best approximation to the full curve at the minimum. )

A general expression for the vibrational-rotational energy levels of a
real diatomic molecule is '

1 1)2 13
T(v,J) = E(v,J)/hc = W, (v + 5) - W X (v + -2-> + Wy, <v + 5)

4
+ w Z. (V + 1) + B J(J+1) - « <v+l>J(J+1)
e e 2 e e 2

- Der(J+1)2 + ...

. (2-45)
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The coefficients of higher-order terms in the power series expansion
usually decrease rapidly. For example, for CO, Herzberg [ 2-5] lists

w, = 2170.21 em™! B, = 1.9314 cm™

w x = 13.461 cm™! o = 0.01749 cm™1
e e e

wy = 0.0308 cm™! D = 0.000006 cm™1
e e e

Transitions may take place between two vibration-rotation levels
when the electric dipole moment changes between these levels and certain
""'selection rules' are met. In particular, the rotational quantum number
must change by unity: AJ = +1 . A selection rule for the vibrational
quantum number is obeyed, at least approximately: Av = + 1 . Transitions
may also occur with |Av| = 2, 3, ..., although usually with rapidly
decreasing intensity. Transitions for which |Av| = 1 are called funda-
mental transitions, and those for which |Av|> 1 are called overtones.
Quantitative expressions for the intensities will be discussed in Section 2. 3. 3.

If the molecule has a permanent dipole moment, pure rotational
transitions may occur with Av = 0. Such transitions take place at quite
low frequencies, typically of the order of 10 to 102 cm™!. The tail of the
rotational band of molecules having small moments of inertia (e.g., of H,0,
HF, or HCl) may be significant up to about 10% cm™1.

Qualitatively, a vibration-rotation band of a diatomic molecule at low
temperatures consists of two sequences of nearly equally spaced lines heading
toward lower and higher frequencies from the band center (the "P' and '"R"
branches, respectively). The intensities of the lines increase initially out-
ward from the band center, reach maxima, then decrease. At higher tem-
peratures, the appearance of band system changes. With increasing tempera-
ture, the maxima move outward from the band center, as more lines in each
band become of significant intensity (Fig. 2-3).

As the temperature is further increased, other bands with the same
value of Av appear superposed on the fundamental band. The lines in each
band are nearly equally spaced, but there is no regular relationship between
the locations of the lines in one band and those in another.

40



CHAPTER 2 — BASIC PRINCIPLES

T=100K P

20 +10 0 10 20 ™

T = 1000 K ™ P R P T = 1000 K
AT MM e O,

+10 +5 0 5 ) 10 -15 m +40 +20 0 -20 -40

a. For B= 10.44 cm~! (HCI). b. For B=2cm-!,

Figure 2-3. Intensity distribution in rotation-vibration bands in
absorption at 100K, 300K, and 1000K (m =J + 1 in the R branch

and m = -J in the P branch).

Because of anharmonicities in the molecule, these higher-order
vibrational transitions have progressively lower frequencies. Since the line
spacing tends to increase toward lower frequencies and decrease toward
higher frequencies, the band tends to spread more toward the direction of
lower frequencies (Fig. 2-4).

The preceding remarks apply in general to diatomic molecules with.
an even number of electrons. Some molecules (e.g., NO, OH) have an odd
number of electrons; this adds somewhat to the complexity of the spectrum.
The odd electron produces a nonzero orbital angular momentum as well as a
nonzero spin. Both cause a splitting of the energy levels; the spin splitting,
however, is generally of much greater magnitude.

In general, each line in the spectrum is split into four strong compo-
nents. The magnitude of the splitting is typically smaller than the average

separation between adjacent rotational lines.

2.3.1.2 Triatomic Molecules

The spectrum of a linear moleéule, such as CO,, has many strong
similarities to that of a diatomic molecule because of its linearity, which
results in a negligible moment of inertia about the axis through the nuclei.
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Figure 2-4. Energy level diagram explaining the fine structure of a rotation-
vibration band. [In general, the separation of the two. vibrational levels is
considerably larger compared to the spacing of the rotational levels than
shown in the figure (indicated by the broken parts of the vertical lines
representing the transitions). The schematic spectrograms (a) and
(b) give the resulting spectrum with and without allowance for the
interaction between rotation and vibration. In these spectrograms,
unlike most of the others, short wave lengths are at the left. ]
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The linear triatomic molecule has four vibrational degrees of freedom.
A symmetric stretching vibration is described by the quantum number v;.
A doubly degenerate bending vibration is described by quantum numbers v,
and £ , and an unsymmetric stretching vibration by v; .

As a result of the presence of the bending vibration, the molecule may
have a net angular momentum about the axis of the equilibrium position of the
nuclei. This results in a splitting of the energy levels, as in the case of the
diatomic molecule with nonzero orbital angular momentum.

The symmetry properties of the CO, molecule result in a vanishing
of alternate rotational levels (except for the molecules containing a rare
isotopic O nucleus, occurring in a concentration of about 0.002, which do
not possess a center of symmetry). '

The H,O molecule provideda classic example of the asymmetric top
molecule. Even for the ideal case of a rigid asymmetric top, expressions
for the rotational energy levels do not exist in closed form, since these levels
are representable as roots of high-order algebraic equations.

Because of the presence of the light H nuclei, the molecule has a
relatively small moment of inertia and, consequently, fairly widely spaced
rotational levels. Also, because of its small moment of inertia, rotational
distortion effects are quite significant.

Tabulations of H,O rotational energy levels are available [2-6, 2-7]
and are useful primarily for analysis of low-temperature ( < 300K) spectra.
At higher temperatures (> 1000K), high rotational levels become of major
importance and reference to experlmental spectral and band model repre-
sentations is required.

2.3.2 TRANSITION PROBABILITIES

The Einstein coefficient Au ) is defined as a spontane‘ous transition

rate of a quantum-mechanical system from an upper state to a lower state so
that the number of spontaneous transitions per unit time is given by

DAy~ ; | (2-46)
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where nu is the number density of particles in the upper state. The coefficient

B 0w is defined such that, in a radiation field of spectral density

Pw = (4/C)Ww° , the number rate of upward transitions is given by

n, p . (2—.47)

w Bﬂ —-u
Similarly, the radiation field induces downward transitions at the rate

Dy P, Bu iy (2-48)

The units of Au are -

2

are sec™!, and those of B and B
- { L —u u

erg ! sec~!, if p, isinerg cm~2,

—{
cm

The condition nl Bz uPy= nuBu g Py + nuAu .y holds at

thermal equilibrium, and by identification with the Planck blackbody function,
it is found that

A = 8mcwd Bu (2-49)

and

&y Bﬁ —-u gu Bu —{ ? (

where &, and g, are the statistical weights of the upper and lower states.

The strength of the transition S!Zu is defined in terms of the Einstein

coefficient B :
{f —u
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’ n
Ji hw ~hcw
= _— —_ - . 2-51
Siu <P>B1—>uc \:1 eXp(kT)J (2-51)

where P is the pressure.

The Einstein coefficient \Bl .U is related to the electric dipole

moment matrix element as follows:

B _ 8™ g o2 (2-52)
L —u 3h’c Lu :
Thus Sﬂu is given by
n
_8nd /] 9 -hcw
Slu = 311_02('0 D IRZU.I |: i exp ( KT >:] . (2-53)

"The relationship between the strength and the absorption f-number is
given by

e’ Ry ~hcw
Sﬂuzm—l-; f 1-eXp(kT> , (2-54)

where e and m are the electronic charge and mass, respectively.

The quantities f, [R 2, A , and B are thus related
fu u—41 { —u

as follows:

87y _
f = —3?’%9- w 1311112 , - (2-55)

B -3 g 2 (2-56)
{ —u 3h°c Tu ’
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— 3
Au—»f = 87hcw (gl/gu) BI-—»u ,

and

2

or, numerically,

f = 1.0848 x 101 em=! w lRm/el2 ,

o)
Il

1.4493 x 10% erg-1 gec~! IR, /o 12 ,

= =15 — 3
A 4,9921 x 107 erg-cm w (gl/gu> BIZ ey

I

10 -1 3 2
7.2351 x 109 cm sec™ w (gl/gu) lRiuel ,

and
f = 7.4846 x 10 1° erg~gsec-cm™! w B _ . .
2,3.3 STRENGTHS OF VIBRATION;ROTATION TRANSITIONS

(2-57)

(2-58)

(2-59)

(2-60)

(2-61)

(2-62)

(2-63)

Strengths of vibration-rotation transitions for diatomic molecules are
discussed first in some detail. Then, more briefly, strengths of Jlinear and

nonlinear triatomic molecules are discussed.

46



CHAPTER 2 — BASIC PRINCIPLES

2.3.3.1 Diatomic Molecules: Line Strength

The electric dipole moment of the molecule can be represented as a
power series in the displacement of the nuclei from their equilibrium
positions:

M = My + My(r-r) + Mg(r-re)z + e , (2-64)

where r is the internuclear separation and re the equilibrium value of r .

It is found that the quadratic and higher terms in M result in the appearance
of overtone bands but have only a relatively minor effect on the fundamental
bands. ‘

By taking the electric dipole moment to be a linear function of r and
assuming separability of the rotational and vibrational parts of the wave
function, an expression for line strength is obtained:

SV'J' 8 n exp [-E(v,J)/kT]
v  3he P Q

x M2 <vlr—relvv> 2 l:qéJ_i’J' + (J+1)6J+1,J,] [1 - exp (-hcw/kT}]

(2-65)

where <v [r—re lv'> is the matrix element of r-r_ between the two

vibrational states v and v', and Q is the partition function.

The effect of the interaction of vibration and rotation on the line
intensities has been studied by numerous investigators [2-8, 2-9]. The
anharmonicity of the molecule and the nonlinearity of the electric dipole
moment enter into a correction factor which may be applied to equation
(2-65) . A first-order correction is provided by the Herman-Wallis F-factor
[2-7] given by

F(m) = 1 - 49ym , (2-66)
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where

Y = 2Be /we

(typically of the order of 1072 to 10~%), and

where Ty is the equilibrium internuclear distance. The rotational quantum

number m is defined by

m = J I+ (R branch)
I I | (P branch)

. More precise expressions are available in the literature [2-8, 2-9], in terms
of higher-order corrections to the potential and electric dipole moment
functions, or for particular assumed potential functions.

If the parameter 6 is positive (i.e., if a stretching of the molecule
increases the magnitude of the electric dipole moment), the total intensity
of the P branch is increased and that of the R branch is diminished.

2.3.8.2 Diatomic Molecules: Band Intensities

The band intensity is the sum of the intensities of all the lines in the
band: '

r 171 ‘
o = Y svd : (2-67)
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The factor w[i - exp (- hcw/kT)] in equation (2-65) may be taken

outside the summation and evaluated at a mean value of w , which, because
of the approximate symmetry of the band, will be approximately wj :

v! 8T n hew , < > .
“ She P - -r |w1
v T wme B [1 o (k'r >] ME QT Y

: s = -hcBm (m-1)
X exp(-EV/_kT)QV 1QR ! g(i-%ym) lmlexp[ T ] .

(2-68)

A direct summation yields (to a good approximation)

’ E
v 8r n —hcco> 2 \ 2 v -1
@ =g P wy [1 exp (———-—-QkT J M, <vlr relv> exp ‘E'F Qv .
(2-69)

To the extent to which the molecule can be represented as a harmonic
oscillator (a good approximation near the equilibrium point and, hence, good
for at least the lowest vibrational states), the square of the matrix element

<V lr-r, [v+ 1> can be written in algebraic form:

87“m_cwy
~ r

<v|r-relv+1> 2 =<—2—l’1——> (v#1) | (2-70)

where mr is the reduced mass of the molecule.

Using this expression and the corresponding expression for the
vibrational energy levels of a harmonic oscillator, the following result is
obtained: ‘ : '

- v+1 m n 2
; av = _3-1'11—1,52- P My . (2-71)
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A customary procedure, which is followed in this Handbook, is to refer to the
density in units of density of a standard atmosphere (STP); that is, density at
standard temperature (273.16K) and standard pressure (1 atm). In the system
of units used here, band strengths are given in (cm™2) (STP). A corresponding
adjustment is given in optical depth. Thus a pathlength of 1 cm through a pure
gas at 3000K and 1 atm has an optical depth of 0.091 cm (STP) .

The independence of total band strength with respect to temperature
can be explicitly expressed by rewriting equation (2-71) :

z ozvv+1 (T)

Z (67 v+l (To)
v

=1 . (2-72)

A similar expression has been developed for the overtone intensities
of a diatomic molecule [2-10, 2-11]:

L0 T i (2] 1o ()]

Z o v+n kT kT
v (To)

(2-73)
2.3.3.3 Triatomic Molecules: Line and Band Strengths

A general expression for the line strengths of polyatomic molecules
cannot be written in closed form. Line strengths may be obtained from
quantum-mechanical calculations [2~12, 2-~13] or by interpolation from
existing tables. Such an approach is not contemplated, however, for the user
of this handbook. ’

In the special case of linear molecules (such as CO,), the negligible
moment of inertia about the molecular axis results in a great simplification
of the line strength expressions., Vibrations which take place along the
molecular axis (e.g., the 4,3-u system of CO,) have expressions for line
strength similar to those for diatomic molecules. However, as a result of
the additional vibrational degrees of freedom, there will be many more
vibrational transitions to consider, which may impede calculations at higher
temperatures.
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Bending vibrations of linear molecules also have simplified analytic
forms for the line strengths, although the band structure is different from that
of a diatomic molecule in that approximately half of the band strength appears
in a Q-branch (e.g., the CO, 15-p band) .

The expressions for the band strengths are similar to those for
diatomic molecules. A transition in a fundamental band system in which \f

changes by unity is assumed to have a matrix element squared proportional
to (vi+1) fora v, — (Vi+1) transition. Combination bands (e.g., the CO,

2.7-u band) become somewhat more complicated (see References 2-10 and
2~11).

2.3.4 NONEQUILIBRIUM EFFECTS: SCATTERING VS, ABSORPTION

In a classical paper written in 1928 [2-14], Milne recast the radiation
energy transfer equation (following Milne's notation)

dN =¢ -a N (2-74)

in terms of the three Einstein coefficients A B

b E) B .
u—1 u—f { —u
The interesting part of this treatment is that it brought out the physical
meaning of the equilibrium assumption (ew =0 N(c)o) at the microscopic level.

The energy exchanged through these three types of transitions is
proportional to the populations of either upper or lower states £ and u.
These populations are also controlled by collision processes of cross sections

bu_>£ and bi—»u‘

In general, a solution to an actual problem is extremely complex
and rarely available in closed form (see Jeffries [2-15]). However, in the
case of a steady "two-level' atom, Milne finds a relatively simple solution
to the function

do 0
€ f Nw 47 + an
L 4T
o

© 1+ 17
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where
b‘l —q ehv/kT {
m = 2hyp°
L=uw

The term 7 is a collision-radiation rate ratio. If the collisions
dominate (at atmospheric densities for instance) » 1 1is large and ew takes

the value oszwo , the equilibrium value assumed so far in this handbook

(i.e., the local thermodynamic equilibrium assumption: LTE).

On the contrary,- if the collision exchanges are less active than the
radiation transitions (upper atmosphere, for instance) » 1 tends to zero and
€7 the source function, takes the form of a scattering term.

Thus, Milne has shown that Kirchhoff's law (ew =a Nwo) can be

numerically tested in terms of atomic or molecular constants and he gave an
exact meaning to the concept of scattering as well.
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2.4 COLLISION LINE WIDTH DEPENDENCE ON THERMODYNAMIC
PROPERTIES

It has been known for a long time that the presence of a gas which is
transparent in a certain spectral region can have a significant effect on the
absorptivity of a species which does absorb radiation in that region. This
phenomenon results from the pressure broadening of the spectral lines of the
absorbing gas by the transparent species.

2.4.1 LINE BROADENING THEORIES

Very elaborate theories of line broadening have been developed
[2-16, 2-17]. The data presented here are based, as far as possible, on
experimental measurements, with the simplest relevant theory used to extend
their ranges of application.

Broadening is determined by the forces between molecules. When two
molecules approach each other sufficiently close that strong forces between
them come into play, they are said to ncollide.!' The collision process may
be viewed as an interruption to the process of emission or absorption of
radiation. The net effect of many such random interruptions is a spreading
of frequencies associated with a particular transition. This spread of
frequencies is defined by a line shape, which is determined by the nature of
the forces between the molecules at the time of collision, The Lorentz line
shape (Section 2.2.1.3. 1) results from an assumption of rigid particles
("billiard-ball' collisions). The Lorentz line shape is generally applied to
all collision-broadened lines, as it is extremely difficult to observe any
deviations from the Lorentz shape. Any such deviations are first observed
in the distant wings of the line and are, normally, important only when the
spectrum of one region is dominated by the wings of distant, very intense
lines (such as in the region beyond a band head) .

Another important class of interactions consists of "resonant-dipole"
collisions. Two molecules having large permanent electric dipole moments
may interact strongly if they are in neighboring rotational states. Such
effects must be considered for highly polar molecules such as H,O or hydro-
gen halides, but they do not exist for a symmetric molecule such as CO;.

Other multipole moments contribute to line broadening, but the two
factors above provide a sufficiently good description for most purposes.
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2,4,2 PRESSURE DEPENDENCE OF COLLISION BROADENING

A linear dependence of the line width Y on pressure has been well
established both experimentally and theoretically, However, it is necessary
to ascribe different broadening powers to each component of a mixture.

The general expression [equation (2~26)] for the half-width, v, of
a spectral line can be written as

Y= DY P = (Zvo ci>p : (2-76)
I T

where p is the total pressure, p; and c, are the partial pressure and

mole fraction, respectively, of component i of the gas mixture, and Yo

i
is the line half-width resulting from a unit pressure of component i, For
self-broadening in a single gas

The quantities Y, are usually determined by experiment, although it
i .
is possible to calculate Yo with some accuracy.
i

The half-widths of individual lines in a spectrum are different, in
general. The variation from line to line may be quite small, and an average
value may be quite serviceable. In some cases (in particular, for highly
polar molecules with few intense lines in the spectrum, e.g., HF at low
temperatures), the range of line widths may be rather large (perhaps by a
factor of 10), and the use of an average value of half-width may be misleading.
However, for most heat transfer calculations, the use of an average half-
width is generally quite reasonable.

Burch, et al. [2-18] have defined a ""self-broadening coefficient" B ,

which is frequently seen in the literature. This B is the ratio of the self-
broadened half-width to the nitrogen-broadened half-width. For a
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two-component system, equation (2-76) becomes

Y= Yo Px T Yo P

N
= v C -+ 04 Y C p
o[ (ofn)
= yON [1 + (B-1) c. ]p , (2-77)

where the "self-broadening coefficient'" B is defined by

B=1vy [y . (2-78)
Ox/ ON

An '"equivalent pressure" Pe is defined as

P = [1 + (B-1) ¢ :]p , (2-79)
e X

so that equation (2-77) can be rewritten as

Y = Y, P . (2-80)

2.4.3 TEMPERATURE DEPENDENCE OF COLLISION BROADENING

Quite apart from Doppler broadening, the ambient temperature T
plays an important part in the collision process. Under simplest assumptions
of kinetic theory, at least for foreign gas broadening, an inverse square root
dependence on temperature is predicted:

55



CHAPTER 2 — BASIC PRINCIPLES

%

Y. o< T~ (2-81)

0.
i

It is worth noting that this temperature dependence is based on a half-width

1
at constant pressure (not constant density). The factor T"/2 is the product
1

+
of two factors: T % » resulting from the increase of speed of the molecules
with temperature, and T™1 resulting from the decrease in density with
temperature at constant pressure. ' - ! DR :

, : A ey :
Despite the oversimplifications of the theory, the T'/2 dependence

is rather well verified by experiment. A better fit to experimental data may

sometimes be made, however, by using an empirical relationship

Yo & T , (2-82)

where n may differ from a value of 0.5.

The situation for self-broadening is somewhat more complicated, at
least for highly polar molecules, such as H,0 or HF. The collisions between
like molecules may be divided into two categories: resonant and nonresonant.
Nonresonant collisions are analogous to inert-gas broadening and can be so
treated. Resonant collisions, on the other hand, are more effective in
broadening the spectral lines. The mechanism involved is more complex,
and the temperature dependence is different. Generally, it is assumed that,
for resonant collisions, the contribution to the line width Yo * is given by

X

[2-19]

N -n b3 .
Yo < T , (2-83)
X

s,

where n* ~ 1.0, Thus, the temperatiire dependence for self-broadening
can be expressed by
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n' *

7o (T) = vg (T,) (To/T) * + Yo " (Ty) (To/T)" , (2-84)
X X - X

%
where n;{ ~ 0,5 , and - n = 1.0 .

ed expressions could be derived, but those which have

More sophisticat
tify their adoption in the

been examined have not been of sufficient value to jus
radiance calculations described in Chapter 5.

57



CHAPTER 2 — BASIC PRINCIPLES '

2.5 PARTICULATE EMISSION AND SCATTERING

The properties of a system composed of spherical particles of a given
index of refraction suspended in a medium of different properties have been
studied over a long period of time [2-20] and are of considerable importance
to a study of radiant transfer. Conceptually, the problem is simple, merely
requiring the matching of boundary conditions for the electromagnetic field
on the surface of the sphere, to determine its scattering and absorption Cross
sections,

In practice, various difficulties are encountered and, while evaluation
of the series solutions for the cross sections is somewhat involved, a more
basic problem is that real systems may be composed of particles which are
not uniform in size and may not even be spherical. Also, it may not be
known whether the particles are liquid or solid, and accurate values for the
complex index of refraction may not be available.

2.5.1 THE EQUATIONS OF TRANSFER

Consider a pencil of radiation propagating in a direction defined by
the polar coordinate angles ¢ and ¢ . The radiated power (in a wavenumber
interval dw) passing through an elemental area dA and contained within
the solid angle dg is

Nw (s, 0, ¢) dA dg dw ,

where Nw is the specti‘al intensity in units of wafts/cmz-cm"i—sr. If there

are n scattering centers per unit volume, each having a total scattering cross
section T’ the power scattered out of the beam in traversing a distance ds

dN = N no dA dQdwds . _ : : " (2-86)
w w SsC

Radiation propagating in other directions may be scattered into the cone dg .
This scattering is most easily expressed in terms of a differential scattering
cross section do/dQ , defined as follows. Consider a plane wave of radiance
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Nw propagating in the positive z direction and incident on a single scattering

particle. The radiance of the scattered light at a distance r from the particle
may be expressed in the form

a « .
dQ , T° dQ

The total scattered power is

dN

w 2 do
f rYdg = N [ =— dg = o0 N . (2-88)
& dQ w & dQ scw

It is usually convenient to introduce a dimensionless angular scattering
. function y(6, ¢) , defined by

v(0, o) = ;1- %%2 0, ¢) . (2-89)
scC

In terms of this function, the increase in the radiance Nw(e, @) in the

direction (6, ¢) due to scattering of radiation propagating in a cone d'
centered at ', ¢' is

= 1 t =01 -n! d !d D
dN Nw(e,ga)nasc(s)'y(e 01, p~p') dQ' ds , (2-90)
and the total increment in Nw due to scattering from all other directions is

dN
ds

- | 1 ! -0 penl) . -
noSCwa(B,qo)'y(OB,(pgo)dQ . (2~91)
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In writing the angular scattering function as dependent only on the scattered
angles 6-9', and ¢-¢', we have implicitly assumed that the particles have
no preferred orientation. In the general case, for the nonspherical particles,
the scattering from the direction 6', o' to o, ¢ Wwill depend on the particle
orientation and cannot be expressed simply in terms of a function of the
difference between these angles.

Thus in the case of an atmosphere containing spherical or randomly
oriented scatterers, the change of the intensity Nw (6, ¢,s) along a ray path

is governed by the relation

dN
w
ds

(0,0) = n e [-Nw(e, 9, +f'y( 0-0", p=¢") Nw(er, o) dQ'] .

(2-92)

This is the equation of transfer for a purely scattering medium and is
appropriate for nonabsorbing scatterers. In general, particles will both
scatter and absorb. In this case Nw decreases by absorption:

de
= =ng N , (2-93)
a w

ds absorption

where o, is the absorption cross section. Nw also increases because of

thermal emission, When the particles are in local thermodynamic equilibrium,
the increase in Nw due to emission is given by

( de ) ‘ |
_ 0 _
ds . B noan ’ (2-94)
emission

where Nw0 is the Planck function (divided by 7) in units of watts fem2-cm™=1-

sr. Thus for absorbing and scattering media in thermal equilibrium the
equation of transfer assumes the form
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dN
w ,— —_— 0
= = - + N
is (Q) n(oSC + oa)Nw(Q) no N _
T29N (8) da' (2-95)
+nosc4f7r'y(9 Q') w( )

where the notation D has been introduced to represent the direction 0, ¢ «

Many authors introduce the concept of a particle albedo B and an
optical depth parameter £ at this point to simplify the notation. The
particle albedo is defined as the ratio of the scattered power to the total
power (scattering + absorption) :

o
g = S¢ . (2-96)
(0} + O
scC a

The optical depth in a direction 'Q is a dimensionless distance parameter
defined by the relation

d¢ = n(c._ + o) ds . (2=-97)
sc a

In terms of B(s) and &(s), the equation of transfer assumes the form

dN (@)
9 - N (@ + 8 [y(8-8)N_ (g)de'+ (BNT . (2-98)

dé (6) “ Am

In the general case of a three-dimensional inhomogeneous scattering medium,
the introduction of the optical depth parameter is not particularly useful

since its value is a function of 6 and ¢. However, in plane-stratified
media, where the density and scattering properties vary only in one direction
(say the z direction), the optical depths in different directions are simply
related in terms of the cosine of the polar angle p(=cos 6)
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dt(6) = dt(u=1)/u . (2-99)

In this case, the independent variable in the equation of transfer can be

taken to be the optical depth in the z direction, £(u =1) , which will now be
denoted simply as £ . Thus the equation of transfer for a plane-stratified
scattering and absorbing medium may be written :

dN - :
—Y 3 - _ Y 0! Py '
Tl ) N, & + 8 [ye-QIN (', §) dg
* U - BN O . | (2-100)
2.5.2 SOLUTIONS TO COMMON SCATTERING PROBLEMS

The solution to the equation of transfer in the general case is exceed-
ingly difficult analytically, Most of the available calculations of the radiance
of inhomogeneous scattering media have been restricted to planar, one-
dimensional approximations. In general, stratified media can be treated by
dividing the region into a number of thin parallel uniform slabs, evaluating
the emittance and transmittance of each, and solving the resulting set of
equations numerically,

The exact treatment of the scattering problem, even for homogeneous
media, is very difficult., If the scattering mean free path is comparable to
the slab thickness or if the absorption cross section is comparable to or
greater than the scattering cross ‘section, an iterative approach which starts
with a single scattering approximation and includes one higher scattering
order at each iteration may converge rapidly enough to be practical. However,
the particle densities in typical combustion gases at moderate pressures can
be high enough that high order scattering cah be quite important,

When the geometry of the cloud has simple symmetry characteristics
(planar or axisymmetric) and only a small number of cases and wavelengths
are to be treated, a Monte Carlo approach can be useful [2-21]. However,
since several hundred photon tracings need to be carried out for each signifi-
cant emitting volume element in the flow and for each wavelength in order to
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get good statistics, this approach is expected to be more beneficial for
checking the validity of various approximate procedures rather than direct
calculation,

The major problems in developing accurate analytic procedures,
even for the evaluation of the mopochromatic radiance of a uniform slab,
arise in the treatment of the angular scattering function. Exact solutions
have been obtained for limiting cases such as isotropic scattering, Rayleigh
scattering, and "infinitely' anisotropic or one-dimensional scattering (i.e.,
scattering only directly forward or directly backward). Mie scattering
cross sections for typical clouds in which the particles are condensed drop-
lets have a strong forward scattering component and a less strong but still
pronounced back scattering component (Fig. 2-5). Thus, the one-
dimensional approximation is expected to be a useful first approximation
when the ratio of scattering mean free path to plume thickness is greater
than the square of the sine of the mean scattering angle. For more arbitrary
phase functions, other methods (6-flux method, Legendre polynomial expan-
sion) give reasonable results [2-22].

Figure 2-5. Scattering diagram for spheres with m = 2, x = 1, showing
characteristic preponderance of forward scattering. (The two polarization
components I; and I, have been plotted separately. )
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APPENDIX 2-A
COLLISION BROADENING — THE LADENBURG-REICHE FUNCTION f(x)

The Ladenburg-Reiche function f(x) is defined by the relation:
f(x) = xexp(-x)lLj(x) + L(x)] , . © (2-A-1)

In which I and I; are modified Bessel functions (see Table 2-A-1). Series
expressions exist for large and small values of x . The first six terms of
the power series expansion

3 5 4 (A 7 6

Toa X

1
fx) = x - ox* + 2 8% Y 102% - %20

(2-A-2)

yield two-place accuracy for x <1 and four-place accuracy for x < 0.5 .

A semiconvergent asymptotic expansion is useful for large values
of x:

1
£ ) _<§>/2 Rz <1 1 3 15 525
7 T 8x  128x% T 1024x° 327688  °°'°

(2~-A-3)

This, as well as other semiconvergent series, must be handled with
caution. Specifically, they must be truncated while the terms are still
decreasing in magnitude; thus, their accuracy is limited. For example, for
x =10, equation (2-A-3) yields

[ 1 '
Y 1 -0.0125
2 Y2 72 | -0.000234
£(10) = <7r) (10) ~0. 000015 = 2,49096 ,
-0. 000002
-t (2-A-4)
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which should be accurate to six significant figures. [ The tabulated value is
£(10) = 2.4910.] However, for x =1,

- -

1

” -0.125

2\ 2 Y -0. 023438

fl) = <7r) (1) -0.014648 : (2-A-5)
-0. 016022

In this case, the series should be truncated after the fourth term and rounded
to two significant figures, thus yielding

2 " Y. |
f(1) = (;) (1) "2 [0.84] = o0.67 . (2-A-6)

A glance at a table of f(x) shows that (1) = 0.6737 . Equation (2-A-3)
will yield two-place accuracy for x > 1 and three-place accuracy for x> 2.

For computational purposes, it may be convenient to approximate
f(x) by some closed-form algebraic expression which has the proper asymp-

. : v 1
totic behavior [f(x) ~ x for small x; fi(x) ~ (2/m) 72 x/2 for large x] and
which fits f(x) to within a predetermined accuracy in the transition region.
Several such approximate forms and their error limits are presented in
Table 2-A-2 (see References 2-23 and 2-24).
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TABLE 2-A-1. f(x) =

x exp (-x)[I(x) + Iy (x)] (Reference 2-25)

©OP0000000 4
CONRNNDUWN=O

[ S O S S e e T e T ey
HFOVRXICNPUWNMOOVRINNDWN-~O

PWLWWPN P

NIRRT

COVANNPWR~OORANNDWN

CONONPPAARRRADRLLLWW

0.0000
0.0952
0.1818
0.2610
0.3337
0.4007
0.4629
0.5208
0.5749
0.6258
0.6737
0.7190
0.7620
0.8030
0.8422
0.8797
0.9157
0.9504
0.9839
1.0162
1.0476
1.0780
1.1075
1.1362
1.1642
1.1916
1.2183
1.2444
1.2699
1.2949
1.3195
1.3436
1.3672
1.3904
1.4132
1.4357
1.4578
1.4796
1.5010
1.5222
1.5430
1.5636
1.5839
1.6039
1.6237
1.6432
1.6625
1.6816
1.7005
1.7191
1.7376
1.9123
2.0722
2.2206
2.3597
2.4910
2.6157
2.7347
2.8487
2.9584
3.0641
3.1663
3.2653
3.3614
3.4548

3.5457
4.3519
5.0304
5.6277

0.0099
0.1042
0.1900
0.2685
0.3406
0.4071
0.4689
0.5264
0.5801
0.6307
0.6783
0.7234
0.7662
0.8070
0.8460
0.8834
0.9193
0.9538
0.9872
1.0194
1.0506
1.0809
1.1104
1.1391
1.1670
1.1943
1.2209
1.2470
1.2725
1.2974
1.3219
1.3459
1.3695
1.3927
1.4155
1.4379
1.4600
1.4817
1.5032
1.5243
1.5451
1.5656
1.5859
1.6059
1.6256
1.6452
1.6644
1.6835
1.7023
1.7210
1.7558
1.9288
2.0875
2.2349
2.3731
2.5037
2.6278
2.7463
2.8599
2.9691
3.0745
3.1763
3.2750
3.3708
3.4640

3.6344
4.4244
5.0933

0.0198
0.1132
0.1982
0.2760
0.3475
0.4135
0.4748
0.5319
0.5853
0.6356
0.6829
0.7278
0.7704
0.8110
0.8498
0.8870
0.9228
0.9572
0.9904
1.0226
1.0537

-1.0839

1.1133
1.1419
1.1698
1.1970
1.2235
1.2495
1.2750
1.2999
1.3243
1.3483
1.3719
1.3950
1.4178
1.4402
1.4622
1.4839
1.5053
1.5264
1.5471
1.5677
1.5879
1.6079
1.6276
1.6471
1.6663
1.6853
1.7042
1.7228
1.7739
1.9453
2.1027
2.2491
2.3865
2.5164
2.6399
2.7579
2.8710
2.9798
3.0848
3.1863
3.2847
3.3803
3.4732

3.7210
4.4958
5.1554

0.0392
0.1308
0.2143
0.2908
0.3611
0.4261
0.4865
0.5429
0.5956
0.6452
0.6921
0.7365
0.7787
0.8189
0.8574
0.8943
0.9298
0.9639
0.9969
1.0289
1.0598
1.0899
1.1191
1.1475
1.1753
1.2023
1.2288
1.2547
1.2800
1.3048
1.3292
1.3531
1.3765
1.3996
1.4223
1.4446
1.4666
1.4882
1.5095
1.5305
1.5513
1.5717
1.5919
1.6118
1.6315
1.6510
1.6702
1.6891
1.7079
1.7265
1.8095
1.9778
2.1328
2.2772
2.4130
2.5416
2.6639
2.7809
2.8931
3.0011
3.1054
3.2063
3.3041
3.3990
3.4914

3.8883
4.6352
5.2775

0.0488
0.1395
0.2223
0.2981
0.3678
0.4324
0.4923
0.5483
0.6007
0.6500
0.6966
0.7408
0.7828
0.8228
0.8612
0.8979
0.9332
0.9673
1.0002
1.0320
1.0629
1.0928
1.1220
1.1503
1.1780
1.2050
1.2314
1.2572
1.2825
1.3073
1.3316
1.3554
1.3789
1.4019
1.4245
1.4468
1.4687
1.4903
1.5116
1.5326
1.5533
1.5738
1.5939

1.6335
1.6529
1.6721
1.6910
1.7098
1.7284
1.8270
1.9938
2.1477
2.2912
2.4262
2.5541
2.6758
2.7923
2.9041
3.0117
3.1156
3.2162
3.3137
3.4084
3.5006

3.9693
4.7034
5.3374

0.0583
0.1482
0.2302
0.3055
0.3745
0.4386
0.4981
0.5537
0.6058
0.6548
0.7012
0.7451
0.7869
0.8267
0.8649
0.9015
0.9367
0.9706
1.0034
1.0351
1.0659
1.0558
1.1248
1.1531
1.1807
1.2077
1.2349
1.2598
1.2850
1.3097
1.3340
1.3578
1.3812
1.4042
1.4268
1.4490
1.4709
1.4925
1.5137
1.5347
1.5554
1.5758
1.5959
1.6158
1.6354
1.6548
1.6740
1.6929
1.7117
1.7392
1.8444
2.0097
2.1625
2.3050
2.4393
2.5665
2.6877
2.8037
2.9150
3.0223
3.1258
3.2261
3.3233
3.4177
3.5096

4.0487
4.7706
5.3968

0.0676
0.1567
0.2380
0.3125
0.3811
0.4447
0.5038
0.5591
0.6108
0.6596
0.7057
0.7494
0.7910
0.8306
0.8686
0.9051
0.9402
0.9740
1.0066
1.0383
1.0689
1.0987
1.1277
1.1559
1.283%
1.2103
1.2366
1.2623
1.2875
1.3122
1.3364
1.3601
1.3835
1.4064
1.4290
14512
1.4731
1.4946
1.5159
1.5368
1.5574
1.5778
1.5979
1.6178
1.6374
1.6567
1.6759
1.6948
1.7135
1.7321
1.8616
2.0255
2.1771
2.3188
2.4523
2.5789
2.6995
2.8150
2.9259
3.0328
3.1360
3.2359
3.3328
3.4270
3.5187

4.1266
4.8369
5.4554

0.0861
0.1735
0.2534
0.3267
0.3942
0.4569
0.5152
0.5697
0.6208
0.6600
0.7146
0.7578
0.7990
0.8384
0.8760
0.9122
0.9470
0.9806
1.0130
1.0445
1.0750
1.1046
1.1334
1.1615
1.1889
1.2156
1.2418
1.2674
1.2925
1.3171
1.3412
1.3649
1.3881
1.4110
1.4335
1.4556
1.4774
1.4989
1.5201
1.5409
1.5615
1.5818
1.6019
1.6217
1.6413
1.6606
1.6797
1.6986
1.7173
1.7357
1.8955
2.0568
2.2062
2.3461
2.4781
2.6035
2.7230
2.8375
2.9476
3.0537
3.1562
3.2555
3.3519
3.4456
3.5367

4.2781
4.9667
§.5709
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TABLE 2-A-2. USEFUL APPROXIMATIONS FOR THE
EQUIVALENT WIDTH OF AN ISOLATED LORENTZ LINE

W = 2nyf(Su/2my)
where f(x) = xexp( -x) [Iy(x) + Ij(x)]
Representations for f(x) Accuracy
f(x) = xexp(-x) [LHx) + Lx) Exact
fx) ~ x - 0.5x% + 0.255% - 0,1042x* + 0.0365%° - 0.0109x® < %% for x= 1
1
f(x) =~ 0.7979x/2 (1 - 0.125x! - 0,0234x72 - 0.0146x7%) <1 for x=1
Y.
f(x) ~ x[1 + 1,57x]7"2 < 109, for all x
Ya % % - 1
f(x) ~ x[1 + 1.57x] + 0.07x72 (1 + 0.5x%) 7! <§% for all x
f(x) ~x(1 + 1.76 x'*%)7 4 <19 for all x
2
y 1/2 v
f(x) ~ 0.798x'%[1 - exp (-1.57x)1"? < 6% for all x
Y Yy
f(x) ~ 0.798x'2[1 - exp (-1.25x"?)] < 18% for all x
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APPENDIX 2-B
DOPPLER BROADENING
The following series form for the equivalent width of a Doppler

broadened line [equation (2-32)] is absolutely convergent for all values
of kqu but becomes unwieldy for values above about 10:

W - <_S_> v (D" ()™ (2-B-1)
W= T
K0/ 520 (n+1)! (n+1) "2
A semiconvergent asymptotic expansion is given by
S -7 7y -1
W= ) 2 [ In(kqu) ] {1 + 0.2886[1n(keu)]
0
- 0.2473[1In (kqu)]
+0.3403[In(kgu) 173 ...}
(2-B-2)

This expression gives three-place accuracy for ks > 20 .

Various approximate forms for the equivalent width W are listed
in Table 2-B-1.
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TABLE 2-B-1. USEFUL APPROXIMATIONS FOR THE EQUIVALENT

WIDTH OF AN ISOLATED DOPPLER LINE

[ee]

ky = k(wy) = 0.47os/yD

W = f {l—exp [—kou exp [~ (w-wy)? 1n2/yD2]-} dw
e |
Expression Accuracy

W = (Su) [1 - 0.3536k,u + 0.0962(kqu)? ~ 0.02083(kou)® < 1% for ku = 2,

+ 0.,003727(kou)* - 0.000567(k0u)5] < 10% for ku = 3

. 1/ _ ’
W ~ 1.128(S/kq) [ 1n(kgu)] 2{1 + 0.2886 [In(keu)] < 3% for ku = 5,

- 0.2473[1n(k0u)]"2} < 10% for ku = 3
.

W o~ 170y, {1n[1 + (0.589Su/yD)2]} 2 < 10% for all u
Note:
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2""50

2-‘6.

2-7,

2_8a

2“10.

2-11.

2-12,

2-13.
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CHAPTER 3

CALCULATIONAL TECHNIQUES FOR HOMOGENEOUS GASES

The transfer equation [ equation (2-22)] can be rewritten as:

u

0
— 0 1 anma— 11! | -
N (w,u) = _f N?(w,u') YT 7(w;u',u)du s (3-1)

where du = p ds. For a gas which is at a uniform temperature throughout,
it reduces to the form

N-w(w,u) = N(i’)(w,T)[l -7 (w,u)] , (3-2)

where the transmissivity 7 is simply
T(w,u) = exp [- k(w)ul . (3-3)

In general, k(w) may be a very rapidly varying function of wavenumber, so
that a precise determination of f Nw(w, u)dw may require evaluation of

equation (3-1) at a very large number of frequencies. Such detailed calcula-
tions may be impractical or undesirable. The band model concept, developed
for this purpose, is discussed in Section 3. 2.

~In certain special cases, such as that of a weakly absorbing gas, the
direct evaluation of f Nw(w, u)dw is greatly simplified. These special

cases are discussed in Section 3.1.
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3.1 LIMITING CASES AND ""FIRST GUESS'' PROCEDURES

These special cases often provide a useful method for obtaining rough
estimates of the radiance.

3.1.1 THIN GAS

If the absorptivity is small at every frequency, i.e., ku << 1 atall
w's, then

N (w,u) =~ N%(w,T) k(w)u , (3-4)
w w
and, over wavenumber intervals that are small compared to kT/hc ,

fN (w,u)dw =~ N?(w,, T)au , (3-5)
Aw ¢ w ’

where

a = fk(w)dw
Aw

and w, -is an appropriate mean frequency. Clearly, this approximation is an
upper limit to the actual value of Nw .

3.1.2 GREY GAS

If the monochromatic absorption coefficient remains constant (k = k)
over a wide spectral interval, the gas is said to be grey. In this event, the

quantity f Nw (w,u)dw over an interval Aw is given by

Aw |
J N (@ w)do = [1-exp (-ka)] [ N (w,u)dw . (3-6)
Aw Aw
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When the absorption coefficient is not constant, but when it is convenient to
make that approximation, equation (3-6) defines the value of k which will
define the grey model.

Because of the inequality

f{l - exp [-k(w)ul} dw = [1- exp (- ku)]l Aw ,
Aw

where
k = fk(w)dw/Aw - ,
equation (3-6) always provides an upper limit for the spectral radiance of

any isothermal gas.

Because of the notoriously nongrey features of molecular spectra,
better models are usually needed and some will be introduced in Section 3. 2.

3.1.3 NONOVERLAPPING LINES

When the spectrum consists of a number of very narrow lines separated
by regions of low emissivity, the radiance integrated over a spectral interval
Aw may be reduced to a summation of equivalent widths. In other words, the

quantity f N (w,u) dw over an interval Aw is given by
Aw ‘

R

J N (;.o,u) dw

A Z Nw(wi’u) f {1-expl- k(w)ul} dw

Aw

R

Z_ N (w ,u) W, () (3-17)

where Wi (u) is the equivalent width of the ith line whose center lies in the
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interval Aw (see Section 2.2). Equation (3-7) provides a useful approxi-
mation so long as two conditions are satisfied: (a) The gas should be
essentially transparent between adjacent lines (i.e., k(w)u <<1 at some
point between each two neighboring lines), and (b) the equivalent widths of
the lines should be small enough that the Planck function does not vary by a
large amount across a single line.

Because of the inequality

f %1 - exp ,:— Zki(w)u]} dw = Z f {1-expl- ki(w)u]} dw

CAw i Aw

the nonoverlapping line approximation always provides an upper limit for the
spectral radiance of any isothermal gas.

The two upper limits specified by the grey gas approximation [ equation
(3-6)] and the nonoverlapping line approximation [ equation (3-7)] provide
useful bounds to the radiance over a wide range of pressures and optical
depths.

3.1.4 INTEGRATED EMISSIVITIES
The equation of transfer for a gas at a uniform temperature [ equation

(3-2) ] may be integrated over a band of width Aw to determine the radiance
emitted in that spectral region:

f Nw(w,s) . f N(f) (0, T) €(w,s) dw . (3-8)
Aw Aw

If the spectral radiance NZ) is evaluated at an appropriate average wave-

number @ (e.g., the center of the band), equation (3-8) becomes

f Nw(w,s) = Nc?) (@, T) f €(w,s) dw . (8-8a)
Aw Aw ‘

If the integral f € dw (the integrated emissivity't) can be evaluated
Aw
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theoretically or empirically, the total band radiance is then determinable by
equation (3-8a).

Directly from the definition of emissivity, one obtains

fe(w) dw = f{l-exp[-;k(w)u]} do = u fk(w)dw = aqu ,
Aw Aw Aw

(3-9)

where o« is the band strength. The approximate equality holds when k(w)u
is small (< <1) throughout the band, i.e., for ""sufficiently'' small path-
lengths. Generally, this relation is not of particular value in heat transfer
calculations [ since the condition k(w)u < < 1 may not be met] , except

insofar as an upper limit of f -¢ dw , however poor, may be of use in
Aw
evaluating the importance of some particular band.

3.1.5 TOTAL EMISSIVITY
The rate of emission of radiant energy from a unit area of the surface

of a body at temperature T and emissivity € (w,T) is given by

[e0]

fmww(w,rr) dw = [e(w,T)W! (0,T) do . (3-10)
0 0

The comparable rate of emission from a blackbody at the same temperature
is given by

[ee)

/ W (w,T)dw = oT* . (3-11)
0

The total emissivity is defined as the ratio of those two quantities:

[es]

e = [ e(w,T) W (0, T) dw/oT* . (3-12)
0
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3.1.6 BOX MODEL

The box model is a much simplified description of an entire band in
which a uniform absorption coefficient is prescribed within an effective
bandwidth Aw and zero absorption is assumed outside the interval Aw.

The integrated emissivity of the band is represented as
fedw = Aw [1 - exp (- au/Aw)] R (3-13)
Aw

where Aw is an effective bandwidth., For diatomic molecules, a prescription
for Aw which yields useful results for rough calculations is [ 3-1]

Aw = 9.9 (BeT) 2 . - (8-14)

where Be is the equilibrium rotational constant of equation (2-45). The

coefficient (9.9) in equation (3-14) is based on a somewhat arbitrary cri-
terion of smallness of the mean absorption coefficient at the edges of the
band; however, the value of Aw is not particularly sensitive to the value
prescribed for the cutoff absorption coefficient.

3.1.7 OTHER EMPIRICAL FORMS

As a result of extensive measurements on numerous gaseous abSorbers,
Burch, et al. [3-2] have represented their values of integrated absorptivity
for particular molecular bands with an equation of the form

foz(w) dw = cu Pen , (3-15)

in which ¢, m, and n are experimentally determined for each molecule
and band, over a specified range of pathlengths. For larger pathlengths
an equation of the form ' ,
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foz(w) do = C + Dlogu + Klog P_ (3-16)

has been used.
3.1.8 MEAN BEAM LENGTH

The radiant heat flux from an arbitrarily shaped volume of gas to a
selected surface element is given by

f waS) (w,T) €(w, L) dw cosd AL , (3-17)
2 0

where dQ is the element of solid angle in direction (0,9); 0 is the angle
between the line of sight and the normal to the surface element, and £ is the
pathlength through the gas in that direction. From the definition of total
emissivity, equation (3-17) becomes

f Lomte (£) cos dQ . ‘: (3-18)
2 4 T |

The "mean beam length' is defined as the radius of a hemispherical gas
volume having, at the center of the hemisphere base, the same radiant flux
as the gas volume under consideration. Thus, the mean beam length L is
defined by the relation ‘

ep(L) = f ep (1) coso ao . (3-19)
2T

In the optically thin limit, L is equal to the "'"geometric mean beam length'
LO: ’

L=2L = -11; f £ cosf dQ . (3-20)
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When the gas is not optically thin, the mean beam length L is somewhat
smaller than the geometric mean beam length L, for volumes other than
hemispheres. Tien [3-3] states that for "common gas-body geometries of
practical interest," L, differs from L by at most 20 percent, ’
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3.2 - BAND MODELS

Band models are hypothetical models of simplified mathematical
structure which are introduced to provide fair representations of the prop-
erties of real spectra at reasonable computing cost. In general, a model
consists of a set of lines in a spectral interval with specified properties
regarding the intensities, shape, number, and distribution of the lines.

3.2.1 REGULAR BAND MODELS

At moderately low temperatures, the spectrum of a diatomic or linear
molecule (aside from the Q-branch region) is usually composed of lines of
slowly varying intensity and spacing. A mathematically simple model which
may provide a good representation is an infinite sequence of equally spaced
spectral lines of identical intensity and shape. When the line is collision-
broadened, this model is known variously as the Elsasser model, the
regular-collision model, or the regular-Lorentz model. Tabulations of the
absorption coefficient and mean transmissivity are available (Appendix 3-A).
When the lines are Doppler broadened, a different representation must be
used, for which tabular data are also available (Appendix 3-A). Such models
would not be expected to provide a good representation in the region of a band
head, near a Q-branch peak, or in a far wing of a band where the absorption
in a given spectral interval has significant contributions from lines of widely
differing strengths.

3.2.1.1 Regular Model for Collision-Broadened Lines Having Lorentz
Constants (Elsasser)

The absorption coefficient of the regular-Lorentz model {3-4] follows
from equation (2-25) and from the definition of the model:

k(w) = ), Sy/m , (3-21)

in which S and y are the line strength and half-width, and d is the line
spacing. Equation (3-21) can be transformed as follows:

i

sinh (2my/d)
cosh (2my/d) - cos (2mw/d) :

k(w) = % (3-21a)
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The mean absorptivity is found by averaging «(w) over an interval of d:

T .
- _ -1 - Bx sinh B _
a =1 (2m) fﬂ exp <coshﬁ — oS z)dz , (3-22)
where B = 2my/d, and x = Su/2my . There are no closed form solutions.

Tables and approximations are given in Appendix 3-A.

3.2.1.2  Regular Model for Doppler Broadened Lines (Golden)

The analogous problem of a band of equally intense, equally spaced,
and equally wide lines of Doppler shape has been studied by Golden [ 3-5, 3-6].
Tabulated values of mean absorptivity are available and are extensive enough
to permit accurate interpolation for any desired conditions. As purely
Doppler-broadened lines indicate relatively low pressure or high temperature,
the application of this model to molecular gases is not likely to be as common
~ as that of the collision-broadened model.

This model, like the regular-Lorentz model, should give a reasonable
representation of a real spectrum when the lines are varying slowly in inten-
sity and spacing. As distinct from the case of Lorentz lines, the widths of
Doppler lines vary in proportion to the frequency. However, since this
variability is quite gradual, its effect is insignificant.

Since any real line is affected by collision broadening, however small
sufficiently far out in its wings, it should be remembered that the Doppler
model will always provide a lower limit to the absorptivity.

For such a model, it follows from equation (2-29) that the absorption
coefficient is given by

[e0]

k(w) = k, Z expl- (v - wy - nd)?1n 2/'yD2] " (3-23)

n= =0

or, alternatively,

82



CHAPTER 3 — CALCULATIONAL
TECHNIQUES FOR HOMOGENEOUS GASES

k(w) = % 05 [m(w - wy)/d exp (- 7r2'yD2/d2 in2)] , (3-24)
where 05, the third Jacobi theta function, is defined by

[e0)

05 (x,y) = 1+2 Z (y)nz cos (2nx) .
n=1

The mean absorptivity is given by

i _
a = 2 f 2{1 - exp [- _Sal{ 04 (7TV, exp (- frZYDZ/dZ 1n 2)>:| }‘dv .
0

(3-25)

A graph of a versus Su/d is shown (Fig. 3-1) for various values of
'yD/d. :

Extensive tabulations are presented by Golden in References 3-5 and
3-6. Two approximate forms with their regions of applicability are repro-
duced in Table 3-A-3.

Frequently it may be found that the line width is small enough relative
to the line spacing that the effect of overlapping of the lines is negligible. In
this event, the mean absorptivity is simply

a = W/d , (3-26)

where W is the equivalent width of an isolated Doppler line (as given in
Section 2.2.1.3.2). As was pointed out in Section 3.1.3, the assumption of
no line overlapping used in obtaining equation (3-26) will always provide an
upper limit to the mean absorptivity.
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Figure 3-1. The mean absorptivity of the regular Doppler band,

3.2.1.3 Regular Model for Mixed Doppler-Lorentz Lines

The general case of a regular model composed of mixed Doppler-
Lorentz (Voigt) lines has been studied by Golden [3-7]. Various series
expansions for the absorption coefficient are presented, but no convenient
analytic forms for the absorption coefficient or the mean absorptivity have
been developed. Much of Reference 3-7 is devoted to a study of conditions
under which the limiting cases (regular Lorentz, regular Doppler, isolated
Voigt line) are applicable. It is useful to note that all three limiting cases
provide lower limits to the mean absorptivity of the regular Voigt model,

3.2.2 RANDOM BAND MODELS

One striking characteristic of many high-resolution molecular spectra,
especially of asymmetric top molecules, and particularly at high temperatures,

84



CHAPTER 3 — CALCULATIONAL
TECHNIQUES FOR HOMOGENEQUS GASES

is the seemingly irregular line spacing or intensity. A regular model such
as Elsasser's would be clearly inapplicable to such a spectrum. To treat
such spectra, ""random'’ band models, in which the location of any line is
assumed to be statistically unrelated to the locations of other lines, have
been developed. Generally, in these models, the line strengths are also
described by a probability distribution, and it is assumed that all lines have
an identical shape, differing only in strength.

The assumption of lack of statistical correlation permits considerable
mathematical simplification in the form of separation of integrals over

frequency, strength, and path.

3.2.2.1 Lines of Equal Strength

The simplest random band model is one in which all lines are assumed
to have the same strength. The mean line spacing is denoted by d, meaning
that a large spectral interval D will contain D/d lines, on the average.
Such a model is unreasonable in that any real spectrum in which the lines
are randomly distributed in spectral location would not have all lines of equal
strength. However, the results are so simple that this model is worth con-
sidering first.

It is found that the mean absorptivity [ equation (2-19)]of a spectrum
composed of lines of strength S, of arbitrary but identical shape, and ran-
domly located at a mean spacing d is given simply by [3-8, 3-9]

Qi
1l

[ a(w) dw = 1 - expl- W(S)/d] , (3-27)
band ‘

where W(S) is the equivalent width of a single such isolated line. The
properties of the band model are, thus, expressed in terms of the properties
of a single line. The mean absorptivities are shown in Table 3-1 (Model A)
and in Figure 3-2.

If the real spectrum is dominated by a number of intense lines, the

"equal strength'' model may give a good representation of the spectrum if
S is replaced by the average strength of these lines.
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TABLE 3-1. CURVES OF GROWTH FOR VARIOUS RANDOM LORENTZ MODELS
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10

MODEL A (LADENBURG-REICHE FUNCTION)
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Figure 3-2. Curves of growth for random band models composed of
Lorentz lines for the four different intensity distribution functions
(A through D) given on Table 3-1.

However, it is frequently found (especially at higher temperatures)
that the presence of numerous low-strength lines has a significant effect on
the mean absorptivity. Thus, one is led to the introduction of a line strength

probability distribution.

3.2.2.2 Exponential Line Strength Distribution

A commonly used probability distribution of line strength is the
exponential distribution:
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4 | 48 ‘ o
P(S) = ;é;- exp(— -@ ) . (3-28)

This strength distribution in a random spectrum of Lorentz lines of equal
widths defines the so-called ""Goody'' model. The widespread use of this
model results not so much from any rational physical basis for the particular
P(S) as from the fact that the expression for the curve of growth is found to
have a simple algebraic form. In particular, it is found [ 3-10] that the mean
absorptivity « [equation (2-21)] is: :

-y
S_u SEu 2
a = foz(w)dw=1-exp - 1+4 ,
band E Y
(3-29)
or, alternatively,
f
SEu SEu -
-lnT = —a-;— 1+ v . (3-30)

The function representing -lnT is called the curve of growth for the particu-
lar model.

It is desirable to relate the parameters SE » ¥, and d_, to observable

E
parameters. In this particular case, SE is related to the mean strength
Y TS
f SP(S)ds = ) ; however, this is not a readily determined quantity

0
and, in fact, for some models such as those having an infinite number of lines,
an average line strength (or spacing) may not be meaningful,

However, if a curve of growth has two asymptotic regions in which
the logarithm of the transmissivity varies as a power of the gas thickness,
the band model parameters are determinable (at least in principle) by making
observations with sufficiently short and sufficiently long pathlengths. Interms
of the quantities SE » vV, and dE » the curve of growth for the exponential line

strength model has a linear asymptotic region
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-InT — SEu/dE as u — 0 s : (3-31)

and a square root asymptotic region

- , e
-lnt — 2(SEyu) /z/dE as yu — @ (3-32)

These are shown on Table 3-1 (Model B) and in Figure 3-2.

3.2.2.3 Inverse Line Strength (S~!) Distributions.

There are both theoretical and experimental justifications for assuming
a line strength probability distribution, P(S) » Whose behavior is dominated
at small- S by a dependence on S~!. Such models have a very large number
of very weak lines, and it is necessary to relinquish any simple concepts of
mean line strength and mean line spacing as these quantities may approach
zero in-limiting cases. However, the previous definitions of equivalent line
strength (SE) and equivalent line spacing (dE) remain useful.

Figure 3-3 shows an actual histogram of the number of lines in each
of six intensity decades, based on a count of lines tabulated by Gates, et al.
[3-11, 3-12] for the 3750 to 3800 cm™ region of the H,0 spectrum. An
approximate S~! relationship is observed over this range of line strengths.

A maximum strength is often imposed on the line strength by intro-
ducing a "truncated" S-! distribution:

P(S) = s7! for S

IA

4S8

(3-33)

P(S) = 0 for S > 4SE .

Table 3-1 givés the corresponding curve of growth (Model C), and Figure
3-2 shows it graphically, , .
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Figure 3-3. AN/AS [proportional to P(S)] for H,O lines in spectral region
" 3750 to 3800 cm™!, obtained by actual count of lines in each strength
decade as tabulated in References 3-11 and 3-12. [Corrections were
made for the deletion of weak lines occuring in the immediate
vicinity of strong lines (see References 3-11 and 3-12)1.
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3.2.2.4 Exponential-Tailed S-! Distribution

A line strength probability distribution defined by

E

P(S) « S lexp <- ﬂ: > (3-34)

results in a curve of growth having the simple form [3-13]:

s_u\ Y%
It = X <1+ -—5—) -1 . (3-35)

This equation and its alternative formulations are summarized in Table 3-1
(Model D), and the curve of growth is shown as h(XE) in Figure 3-2.

This model has the broadest distribution of line strengths and conse-
quently has the widest transition region between the linear and square root
regions. The quantities SE and dE are defined so that the curve of growth

has the same asymptotes as the curves of growth for the other models (Fig.
3-2).

3.2.2.5 The Choice of a Random Band Model

Figure 3-2 illustrates how the adoption of models displaying an
increasing number of weak lines (from A to D) leads to a broader interval
between the two asymptotic regimes. The multiplication of weak lines is
itself related to the complexity of the molecule and to its temperature.
Therefore, it is interesting to introduce here a synthetic model where the
effect of weak lines can be controlled by a simple parameter r. Consider
a model consisting of n + 1 lines of intensities

n
,oo',rs

S ,rSM,r2S Sy

. M (I‘ < 1) ’ ' ? (3—36)

M
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randomly located in a spectral interval. This model is described by the
following probability distribution function:

. | \
P(s) = 'n%f ). b (S—rmSM) . (3-37)
m=0

One finds in the limit of n — ©

.
1+r’2
B = =1 B - (3-38)
E l—r/2 M
and
X, = 1/{ Cxy ) (3-39)
1+r 2 , . '

Thus one has, explicitly,

1/ ©
F(xp,T) = lif;— D [rm (1+r1/2>2 xE} . (3-40)
m=0 A ;

1+r 72

The mean absorptivity of a band consisting of randomly located lines

of intensities S, , rSM , rst y « « « 5 is thus given by

T = 1-exp [-BE F(xE,r)] . (3-41)

The definition of F(xE, r) as an infinite series of Ladenburg-Reiche functions

is not particularly convenient for general use. However, for certain values of
r, F(XE, r) is readily evaluated from existing tabulations of f(x) [3-14].

The function F(XE, r) is shown in Figure 3-4 for values of r of 0.01, 0.1,

0.5, and 1.0. Also shown is f(x), which is the limit of F(xE, r) as r—0.
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10—

nT

—  f(xg) = F(xg, 0)
F(Xe,o.o‘l) —
F(xg, 0.1)

0.1 1.0 | , 10

Figure 3-4. Transition regions of curves of growth for random band
models composed of Lorentz lines for various
intensity distribution functions.

From Figure 3-4 it is seen that even for r as low as 0.01 the curve
of growth defined by equation (3-40) deviates significantly from the Ladenburg-
Reiche curve for a single line. It is also seen that, on the average, the curve
for r= 0.1 is closer to the S-! curve of growth g(x) (and, in fact, to the
curve of growth for the exponential-tailed S~! distribution [h(x)]) than to the
Ladenburg-Reiche curve f(x). This suggests that at temperatures such that

exp (- hcwy/kT) > 0.1 , (3-42)
or, equivalently,
T(K) > 0.6 w, (cm™!) , (3-43)
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(where w, is the lowest vibrational energy level in cm=!), the S-! curves
of growth [g(x) and h(x)] are better approximations to the true curve of
growth than the single intensity curve f(x).

As an example, consider the interpretation of experimental measure—
ments of the CO, 4.3-u band system at 1200K. Note first that for CO,,
equation (3-43) yields a value of about 400K above which temperature the
use of h(x) rather than f(x) is preferable. Figure 3-5 (which is taken
partly from Figure 8 of Reference 3-15) shows experimentally measured
points along the curve of growth at 2273 em~! with a Ladenburg-Reiche curve
[£(x)] and its asymptotes fitted to these points by Oppenheim and Ben-Aryeh,
It also shows the same experimental points to which the curve of growth
h(x) has now been fitted. It is noted that both curves provide an apparently
good fit to the experimental points, and that neither curve could be selected
or rejected on the basis of its fit. It can be seen however, that the extrap-
olation to the asymptotic regions (primarily the square root region) is
affected considerably. :

Figure 3-6 (which is taken from Figure 20 of Reference 3-16) shows
a comparison of a calculated square root region parameter with the experi-

mentally determined values of Oppenheim and Ben-Aryeh. It was commented
previously [3-16] that the apparent disagreement in the 2200 to 2300 c:mf1
range, in which the square root region was least well determined experi-
mentally, would be lessened by the use of any band model containing a non-
constant intensity distribution. The arrow and dot show the change (of about
‘30 percent) at 2273 ecm™! resulting from the different choice of curve of
growth represented by equation (3-35).

3.2.3 RANDOM DOPPLER MODELS

The four line distribution models used in the previous sections for
collision broadened profiles can be used also when the dominant broadening
is due to Doppler effects [3-17]. They shall be described and compared
briefly in this section.

3.2.3.1 Lines of the Same Strength

If all the lines are of the same strength So»

W/d = (E/kyy) D(v,) , | O (3-aa)
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Figure 3-5. Measured values of -(ln7)/p for COyat w = 2273 cm™!

and T = 1200K with Ladenburg-Reiche curve fitted by
Oppenheim and Ben-Aryeh [3-16] compared with an
exponential-tailed curve of growth [equation (3-35)1.

where y,(= koo u) is the optical depth at the line center, k;, is the absorp-
tion coefficient at the line center, and D is the curve of growth for an
isolated Doppler line [ equation (2-33)].

3.2.3.2 Lines Having Exponential Distribution

If the lines have an exponential distribution with respect to a mean
intensity S,, as given by
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Figure 3-6. Comparison of theoretical and experimental values

Y
of 2v,’28’2/d (Reference 3-16).
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P(S) = S, 'exp (-8/8,) | (3-45)
then

W/d = (k/ky) E(vo) : (3-46)
where

E(y) = Ofm exp (-v) D(vy) dv . (3-47)

If one substitutes the integral form of D [equation (2-33)], the
following is obtained:

KE(y) -t [{yexp (-8)/lyexp (-£%) + 11} d¢ .  (3-48)

-0

If y = 1, a power series expansion can be written:

(‘_1)11 yn+1/ (n+1

0

%

E(y) = . (3-49)

ANGE:

The following expansion valid for any y (0 =y <) can also be obtained:

[o o] P
n+1

E(y) = ) 2 [y/(y+1)] , (3-50)

n=0

where

n 1/
a = Z n! (—l)m/m! (n-m)! (m+1)"? .
n m=0
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The convergence of this equation is very slow for large y, in which case an
asymptotic expansion is convenient:

E(y) = 27r‘1/2 (ln y)l/2 [1- (7%/24) (Iny)~%-(72%/192) (Iny)~t -...] .
(3-51)

This series (as is the corresponding expression for an isolated line) is semi-
convergent and must be handled with some caution (see Appendix 2-A).

The two curves'of growth, D(y) and E(y), are compared in Figure
3-7. It is seen that the curve of growth for the exponential intensity distribu-
tion E(y) also has the familiar (log) /2 asymptotic behavior characteristic
of an isolated Doppler line. ‘

3.2.3.3 Lines with S™! Distribution

If an S~! distribution is adopted, two curves of growth can be derived:
G(y) if the distribution function is truncated at a maximum S[P(8S) =
0 for S > SE] or H(y) if an exponential tail is fitted to the distribution

P(S) = $~! exp <- gs—> -

E

The curves G(y) and H(y) are also shown on Figure 3-7. Both
curves of growth demonstrate the same asymptotic behavior for large y's.
The curve H(y) has a somewhat more gradual transition region, since the
corresponding intensity distribution is broader. :

One notes that (in distinction from the case of the Lorentz line shape)
the change to strength distribution function with an S~! dependence markedly
changes the asymptotic behavior of the curve of growth., Since the S~! models
are expected to provide a reasonable representation of the behavior of high-
temperature gases, and since the Doppler line shape provides a lower limit
to the mean emissivity, the (log)3 2 dependence may be quite significant in
extrapolating mean emissivity data to long pathlengths.

3.2.3.4 Random Band Models: Mixed Lorentz-Doppler

For the case of collision broadening, the statistical band model
representation of the optical depth is approximated by
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i E(y): EXPONENTIAL DISTRIBUTION P(S} = So™1 exp (8/Sq)
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Figure 3-7. Pure Doppler curves of growth for various intensity distribution functions (Random Model).
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Xo = ku/ (1 +1m/4:;10)1/2 (3-52)

where an is the collision-broadened fine structure parameter (yC/ d). This
expression provides a transition from the linear region (where ku << a C and
X C approximates ku) to the square root region (where k u>>a,. and X

/2) C C

approximates (4a ku) Figure 3-8 presents an example of the behavior

of this function for water vapor with varying total pressurés.

1
H,0 — 0.368
, w 3475 cm-1
T = 2000K
MOLE FRACTIONS
H,0 0.7
H, 03
10" = 0.353 cm™? atm™1 0.905
1/d=3.18 em
Tw
X
10-2 0.990
103 . : ) L 0.999
102 1071 1 ugyp (atm-cm) 10 102 103
— 1 L I 1 N |
0.001 0.01 0.1 1 10 100

pL - atm-meter (USING TOTAL PRESSURE AT 2000K)

Figure 3-8, Example of optical depth variations with
pressure and pathlength.

As the collision-broadened optical depth decreases with decreasing
pressure, Doppler broadening becomes significant. An approximate repre-
sentation for the Doppler broadened optical depth (see Section 3. 2. 5) is

ku
Xy = l.7a<1n 1+<1'721 ) , (3-53)
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where a_ is the Doppler-broadened fine structure parameter (yD/d) . As

D
with collision broadening, this expression reduces to XD ~ ku when
ku<< ap s but since the Doppler half-width, YD’ is not a function of pres-

sure, there is a single curve for Doppler broadening for a given temperature
and wavenumber. ‘

The relative behavior of the collision and Doppler curves of growth
are shown in Figure 3-8, Although this representation is for a particular
temperature and spectral position, it illustrates the general condition that
Doppler broadening is most significant at low pressures. The method of
combining the Doppler and collision broadened optical depths into an overall
optical depth is described in Section 5.3, but an approximate method is to
neglect the smaller of the two depths as long as they differ by a factor of 3
or more.

3.2.4 HYBRID MODELS

At times, neither a-simple regular model nor a random model appears
to provide the optimum representation for a particular spectrum. As an
example, the moderate-temperature spectrum of a linear molecule may
locally be closely represented by a set of several superposed regular bands
of different intensities.

3.2.4.1 Random Regular Model

A model combining features of both regular and random band models
is developed by assuming that a spectrum can be represented by a random
superposition of a number of regular bands. The properties of each band —
line spacing, strength, and half-width — may be different. Such a model
would be expected to provide a good representation of the spectrum of a linear
molecule at moderate temperatures when the higher-order bands become of
significant strength.

For a random superposition of n bands, the transmissivities combine
multiplicatively,

i=1 ’

so that the mean absorptivity is given by
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a = 1-
i

([ e =]

(1 - ozi) , (3-55)
1

in which a, is calculated for n regular bands by equation (3—22);

The major difference between the regular and random Lorentz models
arises when the line width to line spacing ratio (8 = 2my/d) is small and the
optical depth (x = Su/2my) is large (the "error-function' and ''square-root'
regions, respectively). Plots of the mean absorptivity versus optical depth
for these two models are shown in Figure 3-9 as the uppermost and lowest
curves, respectively. The second and third curves are for random-regular
models composed of the random superposition of two and five regular bands
of equal intensity, respectively. The rapid approach to the totally random
band model curve can be seen.

1.0
=N
) o
erf (z)———, 2%
© 5 5
- [ z
, S ~[1ef (£)]
1-[1-erf( 22- )] > . ’
1—exp (- Z)=1—-exp<- 4 /dku~)
'—n V Y
05 |
NOTE: x=Su/277y
B=2my/d
o i |
0 1 2 3

Cz=(hpgx)%

Figure 3-9. Mean absorptivity for the regular Lorentz [equation (3-A1)],
random regular [ equation (3-55)], and random Lorentz (Goody)
[ equation (3-32)] models in the square root limit showing the
variations between these models.
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3.2.4.2 Quasi-Random Model

A different approach, representing an effort to bridge the gap between
the simplicity of the random band model and the extensive labor and detailed
spectral information required for the precise calculation of monochromatic
emissivities, is taken by the so-called ''quasi-random'" band model [3-18].
The quasi-random model requires explicit knowledge of the locations of the
spectral lines. In this model the spectrum is divided into an arbitrary num-
ber of subintervals. The number, strengths, and widths of the lines falling
in each subinterval are first tabulated. The model is developed by assuming
that within each interval the lines belonging to that interval are randomly
located. The curve of growth for each interval results from contributions
from the lines whose centers fall in the interval and from tails of lines whose
centers are located in neighboring intervals. For very broad intervals (much
greater than the line equivalent widths), the model reduces to the ordinary
statistical model and, for very narrow intervals (small compared to a line
width), the calculation becomes equivalent to the exact monochromatic
calculation. '

3.2.5 APPROXIMATION FORMULAS
In numerical calculations of radiant heat transfer, the computation

time may often be considerably reduced if simple analytic expressions for
the curves of growth can be used. The following expressions can be useful:

a., Equally Intense, Randomly Spaced Lorentz Lines

lnT =~ - ku/N1+ ku/4aC : within 8 percent

Here ku is the mean opacity in the weak line approximation and a c is the

value of the ratio of the (intensity weighted) mean line width to the mean line
spacing (yC/d) .

b. Superposition of Equally Intense Groups of Randomly Spaced

Lorentz Lines of Geometrically Decaying Line Stréngth [kn = (1-1) rk]:

8
Int = - ku(1- 1) e {«/I+|:r(1—r) ku/4a'c] -1} .

N1+ ku (1- r)/dal, 1-x
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For r close to unity (slowly decaying intensities), thls expression reduces

-S8/8
to that for the intensity probability distribution function ste M:

InT= -2ac</1+ku/ac_1> .

where ay = 4ac' /(1 -r), and aC' is the value of the width to spacing ratio

for a single group of lines.

c. Equally Intense, Randomly Spaced Doppler Lines:

Int ~ - N2/In2 ay ﬁn [1+ 1n2 (ku/a )J :  within 9 percent

d. Superposition of Equally Intense Groups of Randomly Spaced
Doppler Lines of Geometrically Decaying Strengths:

Int = ,2/1112 a \/1n{1+l-n—2- [ku(i —r)/an]z}
[6 ) \/iﬁ ra (1-1) \ %] {72
-J1Ins 1-1 In |1+ S - ) 3 .

D

where a.! is the width to spacing ratio for a single group of lines. For r

D
-S/S
close to unity, this reduces to an approximate expression for the ste /M

intensity distribution:

A
3 /21n2. % (72
Int =~ - SIing ay in [1 +< = ku/aD)

= 1 -
where an 2aD /(1 -1) .
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with
ku ) "2
XCZ_zaC<1+a> -1
C
and
| | ) A V2
Xpg = 0-987ap{In[1+ (1.07 ku/a; )1}
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APPENDIX 3-A

REGULAR BAND MODELS

3-A.1 COLLISION BROADENING

Closed-form expressions for the mean absorptivity are not available;
however, various approximations have been developed [3-4]. The following
expression, which in any event provides an upper limit for o, is a good
approximation for B small and x large!

o = erf l:(%ﬁz X>1/2:l , (3-A-1)

where the error function is defined by

erf(z) = 21r'-1/2 f exp (-y?) dy . ' (3-A-2)
0

The error function is tabulated on pages 310-311 of Reference 3-19, and
various expansions are presented on pages 297-298 of the same reference.
The power series expansion for erf(z) is obtained by expansion of the
exponential in the integral in equation (3-A-2):

n 2n+1

erf(z) = 27r_/2 Z — (2n+1) . (3-A-3)

This expansion is absolutely convergent for all values of z but is inconvenient
for large values. A useful expansion for large z is

erf(z) = 1—7r-1/2 z~! exp (-z2) | 1+ i (_l)m 1.3. .. (2m-1) .
m=1 - (2Z2)

(3~A-4)

1. Recall that x = Su/2ry , B = 2my/d.
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This expression is semiconvergent and must be handled cautiously (see
Appendix 2-A).

For large values of S, Elsasser gives the following approximation:
a = 1-exp[-(Su/d)tanh g] . (3-A-5)

This approximation is fairly good even for values of B which are not large.
Note that equation (3-A-5) does not provide an upper or lower limit to « ,
but for any B,

1 - exp [-(Su/d)tanh ] = 1 - exp (-Su/d) (3-A-86)
(the equality holding as § — « ); and also, under any conditions,
a = 1-exp (-Su/d) , (3-A-17)

where equality holds as g—~© or gx—0 .
If the equivalent width of a single line is given by W, an upper limit
to the mean absorptivity of a regular-Lorentz (Elsasser) band is given by

a = W/d = (2ry/d) £(Su/2ny) . (3-A-8)

If the effect of overlapping is negligible (i.e., if the monochromatic absorp-
tivity is small in the troughs between the lines), the equality in equation
(3-A-8) holds.

These limiting forms are summarized in Table 3-A-1. Numerical
values for the mean absorptivity of a regular-Lorentz band are tabulated in

Table 3-A-2.

3-A-2. DOPPLER BROADENING

Approximations to the regular Doppler model are given in Table 3-A-3.
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TABLE 3-A-1. APPROXIMATIONS FOR THE REGULAR-LORENTZ (ELSASSER) MODEL

Approximation providing
lower limit to «

Approximation providing
no limit to «

Approximation providing
upper limits to «

1 - exp [-pf(x)] (B small)

1- exp (-px tanh g) (B large)

1 - exp (-8x) B large or x small

1
erf {(% B2 x) 2J B small and x large

B(x) x small or g2 x small

NOTES: g = 2my/d

x = Su/2my
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CHAPTER 3 - CALCULATIONAL
TECHNIQUES FOR HOMOGENEOUS GASES

FRACTIONAL ABSORPTION OF A REGULAR-LORENTZ
(ELSASSER) BAND, WITH ARGUMENTS y AND B [3-20] (y =xB/sinh )

8

v 0.0001 | 0.0002 | 0.0003 |0.0004 |0.0006 | 0.0008| 0.001 [ 0.002 | 0.003 | 0.004 } 0.006 | 0.008| 0.01 | 0.02 | 003 |0.04 [ 0.06 |008 {010 [02 |03 } 04 | 05 |06 |07 | 08 | 09 | 10
0.02 0000 | 0000 | 0000 | 0000 | 9000 | 0000 | 0000 | 0000 | 0001 | 0001 | 0001 | 0002 | 0002 | 0oos [ 0006 | 0008 | 0012 | 0016 | 0020 | 0040 | 0060 | 0081 | 0203 | 0126 | 0150 | 0175 | 0202 | 0231
0.04 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0001 | 0001 | 0002 | 0002 | 0003 | 0004 | 0008 | 0012 | 0016 | 0024 | 0031 | 0039 | 0079 | 0119 | 0161 | 0204 | 0249 | 0296 | 0346 | 0399 | 0456
0.06 0000 | 0000 | 0000 | 0000 | 0coo | 0ooo | 0001 | 0001 | 0002 | 0002 | 0003 | 00os | 0006 | 0012 | 0017 | 0023 | 0035 | 0047 | 00s8 [ 0117 | 0177 | 0239 | 0302 | 0369 { 0439 | 0512 | 0590 | 0674
0.08 0000 | 0000 | 0000 | 0coo | 0ooo | oot | 0001 | 0002 | 0002 | 0003 | 0005 | 0006 | 0008 | 0015 | 0023 | 0031 | 0046 | 0062 | 0077 | 0155 | 0234 | 0315 | 0399 | 0486 | 0578 | 0674 | 0776 | 088S
0.10 0000 | 0000 | 0000 | 0000 | 000t | oco: | 0001 | 0002 | 0003 | 0004 | 0006 | 0008 | 0010 | 0019 | 0029 | 0038 | 0057 | 0076 | 0095 | 0192 | 0289 { 0390 | 0493 | 0601 | 0713 | 0832 | 0957 | 1090
0.15 | 0000 | 0000 | 0000 |ooo1 [ooor |ooot | o0co1 | 0003 | 0004 | 0006 | 0008 | o011 | 0014 | 0028 | 0042 | 0056 | 0084 o112 | 0140 | 0281 | 0424 | 0570 | 0720 | 0876 | 1039 | 1209 | 1388 | 1576
0.2 0000 | 0000 | 0001 | 0001 | 00oi | 0001 | 0002 | 0004 | 000s | 0007 [ 00Kt |001s | 0018 | 0036 | c0ss | 0073 | 0109 | o146 | 0182 | 036s | 0SS1 | 0741 | 0936 | 1137 | 1346 | 1563 | 1791} 2029
0.3 0000 | 0001 | 0001 | 0001 | 0002 | 000z | 0003 | 000s | 0008 | 0OXO | G016 | 0021 | 0026 [ 0052 § 0078 | 0104 | 0157 | 0209 | 0261 | 0524 | 0790 | 1060 | 1335 | 1618 | 1909 | 2210 | 2520 | 2841
0.4 0000 | 0001 | 0001 | 0001 | 0002 | 0003 | 0003 | 0007 | 0010 | 0013 | 0020 | 0027 | 0033 | 0067 | 0100 | 0133 | 0200 | 0267 | 0334 | 0669 | 1007 | 1350 | 1698 | 2052 | 2414 | 2783 | 3161 | 3548
0.5 0000 | 0001 | 0001 | 0002 | 0002 | 0003 | 0004 | 0008 | 0012 | 0016 | 0024 | 0032 | 0040 | 0080 | 0120 | 0160 | 0240 |0321 | 0401 [ 0803 | 1208 | 1615 | 2028 | 2445 | 2867 | 3295 | 3728 | 4165
0.6 | 0000 | 0001 | 0001 | 0002 | 0003 | 0004 | 0005 | 0009 | 0014 | 0019 | 0028 | 0037 | 0046 | 0093 | 0139 | 0185 | 0278 | 0370 | 0463 | 0927 | 1392 | 1860 | 2330 | 2802 | 3277 | 3754 | 4231 | 4707
0.7 0001 | 0001 | 0002 | 0002 | 0003 | 0004 | 0005 | 0010 | 0016 | 0021 | 0031 | 0042 | 0052 | 0104 | 0156 | 0208 | 0312 | 0417 | 0521 [ 1042 | 1563 | 2085 | 2607 | 3129 | 3649 | 4167 | 4680 | 5185
0.8 | o001 | coo1 | 0002 | 0002 | 0003 | 00os | 0006 | 0011 | 0017 | 0023 | 0034 | 0046 | 0057 ] 01151 0172 | 0230 | 0345 {0460 | 0575 | 1149 | 1723 | 2295 | 2864 | 3429 | 3988 | 4540 | 5081 | 5609
0.9 | 0001 | 0001 | 000z | 0003 | oood |ocoos | 0006 | 0013 | 0019 | 0025 | 0038 |o00s0 | 0063 | 0125 | 0188 | 0250 | 0375 | 0500 | 0626 | 1250 | 1872 | 2489 | 3101 | 3705 | 4209 | 4879 | 5443 | 5986
1.0 | 0001 | 0001 | 0002 | 0003 | 0004 | 0005 | 0007 | 0013 | 0020 | 0027 | 0040 | 0054 | 0067 | 0135 | 0202 | 0269 | 0404 | 0539 | 0673 | 1345 | 2011 | 2672 | 3323 | 3961 | 4584 | 5188 | 5769 | 6322
1S 0001 | 0002 | 0003 | 0004 | 000s | 0007 | 0009 | 0018 | 0026 | 0035 | 0053 | 0070 | 0088 | 0176 | 0264 | 0352 | 0528 | 0703 | 0878 | 1749 | 2608 { 3437 | 4239 | 5004 | 5724 | 6394 | 7007 | 7560
2 0001 | 0002 | 0003 | 0004 } 0006 | 0008 | 0010 | 0021 | 0031 | 0042 | 0063 } 0084 | 0105 | 0209 | 0314 | 0419 | 0628 | 0837 | 1045 | 2076 | 3077 | 4036 | 4940 | 5778 | 6541 [ 7222 | 7819 | 8328
3 0001 | 0003 | 0004 | 000s ] 0008 | 0011 | 0013 | 0026 | 0040 | 0053 | 0079 | 0106 | 0132 | 0264 | 0396 | 0527 | 0791 {1083 | 1314 | 2596 | 3817 | 4949 | 5973 | 6872 | 7639 | 8273 | 8780 | 9170
4 0002 | 0003 { 0005 | 0006 | 0009 | 0012 {0015 | 0031 | 0046 | 0062 | 0093 | 0123 | 0154 | 0309 | 0463 | 0617 | 0924 | 1230 | 1534 | 3016 | 4398 | 5642 | 6720 | 7619 | 8338 | 8888 | 9291 | 9570
5 0002 | 0003 | 0005 | 0007 { o010 | 0013 | 0017 | 0035 | 0052 | 0070 | 0104 | 0139 | 0174 | 0347 | 0521 | 0694 | 1040 | 1383 | 1725 | 3374 | 4882 | 6197 | 7292 | 8158 | 8808 | 9270 | 9578 | 9772
6 0002 | 0004 | 0006 | 0008 {0011 {0015 | 0019 | 0038 | 0057 | 0076 | 0115 | 0153 | 0191 | 0382 | 0573 | 0764 | 1144 {1521 | 1895 | 3689 | 5296 | 6657 | 7744 | 8560 | 9135 | 9514 | 9746 | 9877
7 | 0002 [ 0004 | 0006 | 0008 | 0012 | 0017 | 0021 | 0041 | 0062 | 0083 | 0124 | 0166 | 0207 | 0414 | 0621 | 0827 | 1238 | 1646 | 2050 | 3972 | 5659 | 7045 | 8108 | 8866 | 9367 | 9674 | 9845 | 9933
8 | 0002 | 0004 | 0007 | 0009 {0013 | 0018 | 0022 | 0044 | 0067 | 0089 | 0133 | 0178 | 0222 | 0444 | 0665 | 0886 | 1326 | 1762 | 2193 | 4229 | $981 [ 7377 | 8405 | 9102 | 9534 | 9779 | 9905 | 9963
9 | 0002 | 000s | 0007 | 0009 |00i4 | 0019 {0024 {0047 | 0071 | 0094 | 0142 | 0189 | 0236 | 0472 | 0707 | 0942 | 1409 | 1871 | 2327 | 4465 | 6269 | 7664 | 8650 | 9285 | 9655 | 9850 | 9942 | 9980
10 0002 | 0005 | 0007 | 0010 | 0015 | 0020 | 0025 | 0050 | 0075 | 0100 | 0149 | 0199 | 0249 | 0498 | 0746 | 0994 | 1486 | 1973 | 2452 | 4683 | 6529 | 7914 | 8854 | 9429 | 9744 | 9897 | 9964 | 9989
11 0003 | 0005 | 0008 | 0010 | 0016 | 0021 | 0026 | 0052 | 0078 | 0105 | 0157 | 0209 | 0262 | 0523 | 0783 | 1043 | 1560 | 2069 { 2571 | 4887 | 6765 | 8133 | 9025 | 9542 | 9809 | 9930 | 9977 | 9994
12 0003 | 0005 | 0008 | 0011 | 0016 | 0022 | 0027 | 0055 | 0082 | 0109 | 0164 [0219 | 0273 | 0547 | 0819 [ 1091 | 1630 |2161 | 2683 | 5077 | 6980 | 8325 | 9168 | 9632 | 9857 | 9952 | 9986 | 9997
13 0003 | 0006 | 0009 | 0011 | 0017 | 0023 | 0028 | 0057 | 0085 | 0114 | 0171 |0228 | 0285 | 0569 | 0853 | 1136 | 1697 | 2249 | 2790 | 5256 | 7177 | 8496 | 9288 | 9704 | 9893 | 9967 | 9991 | 9998
14 0003 | 0006 | 0009 | 0012 [ 0018 | 0024 | 0030 | 0059 | 0089 | 0118 | 0177 | 0237 | 0296 | 0591 | 0886 | 1179 | 1761 | 2333 | 2893 | 5424 | 7358 | 8646 | 9093 | 9761 | 9920 | 9977 | 9994 | 9999
15 0003 | 0006 | 0009 | 0012 | 0018 | 0025 | 0031 | 0061 | 0092 | 0123 | 0184 | 0235 | 0306 | 0612 | 0917 | 1221 | 1823 |2414 | 2992 | 5583 | 7528 | 8780 | 9477 | 9807 | 9939 | 9984 | 9997 | 9999
16 0003 | 0006 | 0009 | 0013 | 0019 | 0025 | 0032 | 0063 | 0095 | 0127 | 0190 | 0253 | 0317 | 0633 | 0948 | 1261 | 1882 | 2492 | 3086 | 5734 | 7679 | 8900 | 9551 | 9844 | 9954 | 9989 | 9998

20 0004 | 0007 | 0011 | ooi4 | 0c21 | 0028 | 0035 | 0071 | 0106 | 0142 | 0213 | 0284 | 0354 | 0708 | 1061 | 1411 | 2103 12779 | 3434 | 6267 | 8192 | 9265 | 9753 | 9932 | 9985 | 9997

30 0004 | 0009 | 0013 | 0017 | 0026 | 0035 | 0044 | 0087 | 0131 | 0174 | 0261 | 0348 | 0435 | 0869 | 1300 | 1727 | 2566 | 3375 | 4147 | 7255 | 8995 | 9719 | 9941 | 9991 | 9999

40 0005 | 0010 | 0015 | 0020 | 0030 | 00do | coso | 0101 | 0151 | 0201 | 0302 | 0402 | 0503 | 1003 | 1500 | 1991 | 2948 | 3861 | 4718 | 7934 | 9424 | 9889 | 9986 | 9999

50 0006 | 0011 | 0017 | 0023 | 0034 | 004s | 0056 | 0113 | 0169 | 0225 | 0338 | 0450 | 0562 | 1122 | 1676 | 2222 | 3279 [ 4275 | 5196 | 8424 | 9663 | 9955 | 9996

60 0006 | 0012 | 0019 | 0025 | 0037 | 0049 | 0062 | 0123 | 0185 | 0247 | 0370 | 0493 [ 0616 | 1229 | 1834 | 2428 | 3572 4638 | 5607 | 8785 | 9801 | 9981 | 9999

70 0007 | 0013 | 0020 | 0027 | 0040 | 0053 | 0067 | 0133 | 0200 | 0266 | 0400 | 0533 | 0666 | 1327 | 1978 | 2617 | 3838 | 4961 | $966 | 9057 | 9881 | 9992

80 0007 | 0014 | 0021 | 0029 | 0043 | 0057 | 0071 | 0142 | 0214 | 0285 | 0427 | 0570 | 0712 | 1418 | 2112 | 2791 | 4080 | 5252 | 6284 | 9264 | 9928 | 9997

90 0008 | 0015 | 0023 | 0030 | 0045 } 0060 | 0076 | 0151 | 0227 | 0302 | 0453 | 0604 | 0755 | 1503 | 2238 | 2953 | 4303 | 5516 | 6567 | 9423 | 9957 | 9999

100 0008 | 0016 | 0024 | 0032 | 0048 | 0064 | 0080 | 0159 | 0239 | 0319 | 0478 | 0637 | 0796 | 1583 | 2355 | 3105 | 4511 | 5758 | 6823 | 9546 | 9974 | 9999

150 0010 | 0020 | 0029 | 0039 | 0059 | 0078 | 0098 | 0195 | 0293 | 0390 | 0585 | 0780 | 0974 | 1933 ' 2865 | 3755 | 5373 | 6725 | 7791 | 9858 | 9998

200 00t1 | 0023 | 0034 | 0045 | 0068 | 0090 | 0113 | 0226 | 0338 | 0451 | 0676 | 0900 | 1124 | 2226 | 3284 | 4282 | 6036 | 7419 | 8426 | 9954

300 0014 | 0028 | 0041 | 0055 | 0083 | 0111 | 0138 | 0276 | 0414 | 0552 | 0827 | 1102 | 1375 | 2709 | 3965 | 5114 | 7012 | 8341 | 9167 | 9995

400 0016 | 0032 | 0048 | 0064 | 0096 | 0128 | 0160 | 0319 | 0478 | 0637 | 0955 | 1271 | 1585 | 3108 | 4514 | 5762 | 7698 | 8904 | 9545 | 9999

500 0018 | 0036 | 0054 | 0071 | 0107 | 0143 | 0178 | 0357 | 0535 | 0713 | 1067 [ 1419 | 1769 | 3452 | 4976 | 6288 | 8202 | 9264 | 9747

600 0020 | 0039 | 0059 | 0078 | 0117 | 0156 | 0195 | 0391 | 0586 | 0780 | 1168 | 1552 | 1935 | 3757 | 5375 | 6727 | 8583 | 9500 | 9857

700 0021 | 0042 | 0063 |-0084 | 0127 | 0169 | 0211 | 0422 | 0633 | 0843 | 1261 | 1676 | 2086 | 4032 | 5726 | 7100 | 8876 | 9657 | 9919

300 0023 | 0045 | 0068 | 0090 | 0135 | 0180 | 0226 | 0451 | 0676 | 0901 | 1347 | 1790 | 2227 | 4283 | 6038 | 7421 | 9103 | 9764 | 9953

900 0024 | 0048 { 0072 | 0096 | 0144 | 0191 | 0239 | 0478 | 0717 | 0955 | 1428 | 1896 | 2358 | 4514 | 6318 | 7698 | 9281 | 9836 | 9973

1000 0025 | 0050 | 0076 | 0101 | 0151 | 0202 | 0252 | 0504 | 0756 | 1006 | 1505 [ 1997 | 2481 | 4729 | 6572 | 7941 | 9422 | 9886 | 9984

1500 0031 | 0062 | 0093 | 0124 | 0185 | 0247 [ 0309 | 0617 | 0925 | 1231 | 1837 | 2433 | 3014 | 5614 | 7547 | 8787 | 9799 | 9981 | 9999

2000 0036 | 0071 | 0107 | 0143 | 0214 | 0285 | 0357 | 0713 | 1067 | 1420 | 2115 | 2795 | 3453 | 6289 | 8203 | 9264 | 9927 | 9997

3000 0044 | 0087 | 0131 | 0175 | 0262 | 0349 | 0437 | 0872 | 1305 | 1734 | 2576 | 3387 | 4161 | 7267 | 8997 | 9715 | 9990

4000 | 00so | o101 { 0151 [ 0202 {0303 [ 0404 | 0504 | 1007 | 1505 | 1997 | 2957 |3871 | 4729 | 7941 | 9422 | 9886 | 9999

5000 | 0056 | 0113 | 0169 | 0226 | 0338 | 0451 | 0564 | 1125 | 1680 | 2227 | 3286 |4284 | 5205 | 8427 | 9661 | 9953

6000 0062 | 0124 | 0185 | 0247 | 0371 | 0494 | 0617 | 1231 | 1838 | 2433 | 3579 -| 4645 | s614 | 8787 | 9799 | 9981

7000 0067 | 0134 | 0200 | 0267 | 0400 } 0534 | 0667 | 1329 | 1982 | 2621 | 3843 |4967 | 5972 | 9057 | 9879 | 9992

8000 0071 | 0143 | 0214 | 0285 | 0428 | 0570 | 0713 | 1420 | 2116 | 2795 | 4085 | 5257 | 6289 | 9264 | 9927 { 9997

9000 0076 { 0151 | 0227 | 0303 | 0454 | 0605 | 0756 | 1505 | 2241 | 2957 | 4308 | 5521 | 6572 | 9422 | 9956 | 9999

10000 | 0080 | 0160 | 0239 | 0319 | 0478 | 0638 | 0797 | 1585 | 2358 | 3108 | 4515 | 5763 | 6827 | 9545 | 9973 | 9999

2x108 0113 | 0226 | 0338 | 0451 | 0676 | 0901 | 1125 | 2227 | 3286 | 4284 | 6039 | 7421 | 8427 | 9953

3x10 0138 | 0276 | 0414 | 0552 {0828 | 1102 | 1375 | 2710 | 3967 | 5116 | 7013 | 8341 | 9167 | 9995

4x10 0160 | 0319 | 0478 | 0638 | 0955 | 1271 | 1585 | 3108 | 4515 | 5763 | 7699 | 8904 | 9545 | 9999

§x10 0178 | 0357 | 0s3s | 0713 | 1067 | 1420 | 1769 | 3453 | 4977 | 6289 | 8203 | 9264 | 9747

6x10 0195 | 0391 | 0586 | 0781 | 1168 | 1554 | 1935 | 3758 | 5376 | 6728 | 8584 | 9500 | 9857

7x10% 0211 | 0422 | 0633 | 0843 | 1261 | 1676 | 2087 | 4033 | 5726 | 7101 | 8876 | 9657 | 9918

8x10% 0226 | 0451 | 0676 | 0901 | 1348 | 1790 | 2227 | 4284 | 6039 | 7421 [ 9103 | 9763 | 9953

9x10 0239 | 0478 | 0717 | 0955 | 1428 | 1897 | 2358 | 4515 | 6319 | 7699 | 9281 | 9836 | 9973

10xt03 0252 | 0504 | 0756 | 1007 | 1505 | 1997 | 2482 { 4729 | 6572 | 7941 | 9422 {9886 | 9984

15x10 0309 { 0617 | 0925 | 1231 | 1838 | 2433 | 3015 | 5614 | 7547 | 8787 | 9799 | 9981 | 9999

a. Multiply entries by 104,
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TABLE 3-A-3. APPROXIMATIONS FOR THE REGULAR DOPPLER MODEL

Approximatfons for o Accuracy

AN

(lower limit) o = 1 -1, (Sd_u oz') exp (— (Si_u) (large yD/d) 1/2% for yD/d = 0,27

< 2% for yD/d = 0.24
(any Su/d)
(upper limit) o = S p (kou) (small y_/d) < 3% for y_/d = 0.16
I,d D D

N

<
or 1, whichever is smaller 6% for YD/ d 0.24

(any Su/d)

NOTES: a'

F 00 )] o - 5 @)

s3]
2
f5(x,y) = third Jacobi theta function = 1+ 2 Z (y)n cos (2 nx)
n=1

ky = 0.470 S/yD = k(w,) for isolated Doppler line

SIASVYO SNOINIDOWOH HOd SINDINHOIAL
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CHAPTER 3 — CALCULATIONAL
TECHNIQUES FOR HOMOGENEOUS GASES

APPENDIX 3-B

SELECTION OF BAND MODEL TO DESCRIBE
EXPERIMENTAL DATA

In an ideal situation, laboratory measurements of the mean spectral
absorptivity of any molecule of interest should be sufficiently extensive and
accurate to determine the form of the curve of growth for all conditions .
(pressure, pathlength, etc.) which may be of possible future concern.

However, before such an ideal state is reached, it is frequently
‘necessary to make use of more fragmentary experimental data. The state of
available data may range from a set of very extensive and accurate measure-
ments to a single measurement of possibly low accuracy.

As a first step in analyzing the data, the pressure and temperature
ranges should be examined to determine the dominant form of line shape.
For example, if the laboratory data are all at atmospheric pressure, the
effect of Doppler broadening can be immediately ignored. In general, if the
Lorentz half-width is greater than the Doppler half-width, the effect of
Doppler broadening is negligible (less than 10 percent — see Figure 3-B-1).

As an example, for CO, at 300K, the mean Lorentz half-width is given
by 'yc(cm‘i) ~ 0.06 p, where p is the pressure in atmospheres. The

Doppler half-width is dependent upon the frequency, but at w = 2000 cm~! ,
it is equal to [ see equation (2-31)] Yp 0.002 cm~!, Thus at 300K

Yo / Yp ~ 30 p results, indicating that Doppler broadening should not.be

significant at pressures above ~ 1/30 atm. Note that a pressure below 1/30
atm is a necessary condition for Doppler broadening to be significant but is
not sufficient since the Doppler effect is noticeable only in the trans1t1on
region of the curve of growth (see Fig. 3-B-2).

: _t
At other temperatures, since Yp T}/2 and Yo & T % (approxi-

mately), one finds / ~ 30p (300/T). Thus v/ 2 1 when
Yc’7p c’’p

(1/30) (T/300); e.g., p 2 1/3 atm for T = 3000K. Again p < 1/3
atm is a necessary condition for Doppler broadening to be significant. It has
been shown elsewhere [3-15] that at this temperature the overlapping of the
large number of lines in the CO, spectrum is so extensive that the curve of’
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- Figure 3-B-1. Maximum error in curve of growth for Doppler-Lorentz
¢ line resulting from neglect of Doppler component.

growth is virtually insensitive to any change in line shape. Thus, the absorp-
tivity is described adequately by Beer's law in this case.

Assuming then that collision broadening is the dominating factor for
the conditions of the experimental data, what is the proper choice of Lorentz
band model? It will be shown in Section 3-B. 3 that the form of the curve of
growth of random Lorentz models is relatively insensitive to large variations
in the line intensity distribution function. The question of randomness is
possibly a more critical one than that of the line intensity distribution.

If the molecule is linear, the spectrum (at least at low temperatures)
will show an obvious regularity of spectral lines of almost equal intensity with
nearly equal spacing. In such a case, the regular or Elsasser model is the
plausible choice, or, if the presence of '"hot'" bands is significant, the random-
regular model. '
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In other cases, a totally random model may be more reasonable. To
see if such a model will provide a proper fit, consider the random exponential
Lorentz band model. Its curve of growth [ equation (3-30)] is given by

1
In7T = -ku <1 4, B —/2 (3-B-1)
T= 4a ’
or
' kici A
InT = -ku |1+ v , : (3-B-2)
where u = pi£ = cipTﬁ , & = aOpT, c, is the mole fraction of the absorbing

species, and pi and pT are the partial and total pressures. A convenient

transformation can be made as follows:

(- U./].n’T>2 = k™% + (4ak)™? cijz . (3-B-3)

Thus, if measurements are available for a spectral region described by such
a band, a graph of (-u/ln 7)% versus ciﬁ. will form a straight line with the

intercept (at cil = 0) determining k and the slope determining the product

ack (see, for example, Figures 3-B-3 and 3-B-4).

The accuracy to which these parameters are determinable depends on
the accuracy and the extent of the experimental data. Clearly, if none of the
data fall near the square-root region of the curve of growth, it will not come
as a surprise that the graph of equation.(3-B-3) may determine the intercept
(i.e., k) with considerable accuracy but fail to determine any slope (i.e.,
a, is indeterminate) .

If the points can be fit with a straight line within experimental error,

this indicates that the chosen model adequately represents the experimental
data. A poor fit with apparently random scatter in the data (if_the data
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P(S)oc $°1 exp(-S/Spy)

P(S) = 55" exp (-5/5,)

(u/ln7)2

P(S) = 8(S-S)

cif

Figure 3-B-3. The function (u/ln 7)? for various
random Lorentz band models.

cannot be fit by any reasonably smooth curve) indicates uncertainty about the
specified experimental accuracy. If the data can be fit by a smooth (but
nonlinear) curve, the validity of the model is dubious. Three major assump-
tions should be examined: randomness of line locations, Lorentz line shape,
and line intensity distribution. Consider the effect that the violation of any of
these assumptions would have on the shape of the curve.

3-B.1. RANDOMNESS OF LINE LOCATIONS

It is this assumption which leads to the prediction of asymptotic square
root behavior of the curve of growth at long pathlengths., As a consequence of
this assumption, a nonzero probability is assigned to any arbitrarily small
absorption coefficient. Since over any real spectral interval an actual non-
zero minimum absorption coefficient exists, this assumption is necessarily
violated, and a deviation from a square root to a linear behavior will appear
at sufficiently long pathlengths.

Except for the case of spectra composed of widely separated lines,
this deviation may appear at values of absorptivity so close to unity that
experimental error in In T becomes extremely large. Conversely, a very
large error in the predicted curve of growth may make only a small error
in the predicted absorptivity.

118



CHAPTER 3 — CALCULATIONAL
TECHNIQUES FOR HOMOGENEOUS GASES

200 T T T T

I 1 1 1 T | 1 1 | J l 1 | 1 ' 1 ) 1

= 3500 cm™!
150 |— T = 2000K ]

" g } MEASURED DATA -

(-u/fnT1)2

Figure 3-B-4. Example of transformed curve of growth for H,O at 2000K for
w = 3500 cm~! in terms of (-u/lnT) 2 versus u.

If the transmissivity (rather than absorptivity) is of primary concern,
the situation is much more critical at long pathlengths, since what is a small

relative error in the absorptivity may correspond to a large relative error in
transmissivity.
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3-B. 2. LORENTZ LINE SHAPE

Consider separately (1) non-Lorentzian shape of pressure-broadened
line wings and (2) presence of a significant Doppler component. The effect
of (1) will appear in the long pathlength region. A dependence proportional

to (w - wo)-n in the far wings of the line leads to an asymptotic (ciﬂ )l/n
behavior of the curve of growth (n=2 for a Lorentz line). A dependence

~ —1-
such as (w - w,) 8 as observed in the far wings of HF lines leads to a

0.55 0.9

predicted asymptotic (cil ) behavior of the curve of growth [and (ciﬂ. )

for (u/In7)2]. More complex line shapes are more difficult to analyze;
however, the effect of the exponential-type dropoff observed in the far line
wings of CO, is probably more than overshadowed by the effect of nonrandom-
ness described in paragraph 3-B. 1.

The effect, (2), of a significant Doppler component appears in the
intermediate (transition) region of the curve of growth. Its effect on the
function (-u/ln 7)? is to lower the curve in the small ct region but to leave

the intercept (at ciﬂ = 0) and the linear portion at 1arge ciﬁ values
unchanged, (see Figure 3-B-5). An upper limit to the effect of Doppler

broadening on the curve of growth may be obtained from Figure 3-B-1.

3-B.3 LINE STRENGTH DISTRIBUTION

The exponential line strength distribution function has been selected
on a quite arbitrary basis, largely because of the simplicity of the mathe-
matical form of the resulting curve of growth. It has been remarked pre-
viously that the curve of growth is not particularly sensitive to wide varia-
tions in the line strength distribution function. Consider the corresponding
effect on the function (-u/In )2,

At one extreme is certainly the delta-function distribution
P(S) = 5(S-S,) , ‘which assigns identical strengths to all lines. The curve
of growth is given by the Ladenburg-Reiche function:

ku
-lnT = 27ma f,27ra , (3-B-4)
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2 NEGLIGIBLE
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\ INCREASING DOPPLER COMPONENT
cil
Figure 3-B-5. Qualitative effect of Doppler component on the function
(-u/ln 7). For yc/yD ~ 1, the maximum lowering of the
curve is = 20 percent.
where
£(x) = xexp (-x) [I(x) + L(x)]
a =y/d = (y/d) Py »
and

x = ku/2ma = kci£/27ra0 .
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For this curve of growth, direct evaluation yields
(-u/ln 7)% = k=2 exp (2x) [I,(x) + I (x)]-2 . (3-B-5)

This function is slightly concave upward (see Figure 3-B-3). It is asymptotic
to the straight line

(1/8) k™2 + (4 agk)-! ct . (3-B-6)

Thus, if only th‘e asymptotic (large ci!) region is plotted, the slope will give
the correct value of the product agk . The intercept gives (m/8)k-2 rather

1
than k™%, so the deduced "k" is (8/r) fy = 1.60 k, i.e., a value of k
which is 60 percent higher than the correct value. On the other hand, the
curve at ciﬁ = 0 is tangent to the straight line

k=2 + (27 ajk)-! ct . (3-B-7)

Thus, if only data at small ci! are used, the correct value of k is obtained

from the intercept, but the deduced "ay* is (/2)a, = 1.57 a;, i.e., a
value of a;, 57 percent higher than the correct value.

These two cases represent the worst possible extremes. If the data
are in the transition region, say around x=1 , where the tangent to the curve
is given by

0.84 k™ + (4.62 agk)™! . ) (3-B-8)

the deduced "k is k/N 0.84 , i.e., only 8 percent too high. The deduced
"agk'" is (4.62/4)agk, i.e., 15 percent too high, so that the deduced Mal
is 7 percent too high. Thus a fit to the random exponential band model in this
region will lead to errors in the curve of growth of no more than 8 percent on
extrapolation all the way into the linear or square root regions.
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As the second case of a different line intensity distribution, consider
the function P(S) « S~ exp (-8/8;). As previously discussed, this is an
extremely broad distribution of line intensities, probably realistic at quite
high temperatures. For the exponential-tailed 1/S distribution, one has
[ equation (3-35)]

. 1
lntT = -2a[(1+ ku/a)/2 -11] s (3-B~9)
or
| ket ket \ /o) {1
(-w/InTR =< 8afl1 + < -1+ = 22, (3-B-10)
2 g a,

(see Figure 3-B-3). This curve is tangent, at ci.(l = 0, to the line

K2 + (2agk)™? cd .

Thus data near ciﬂ = 0 determine the correct value of k, but the deduced

value of "a,'"' is % ay, 50 percent too low. The predicted curve of growth in

, 1
the square root region [dependent on (agk) /2] will be 29 percent too low.

The curve only slowly approaches a straight line at large values of
ciﬁ . However, consider an intermediate portion of the curve, say around

kl/a, = 8, at which point the curve is tangent to the line

4 g -

Reliance on data in this region would produce an indicated value of "k,"" N 3/4 k,
or 13 percent too low. Similarly, the indicated value of "agk' is (3/4) ack,

so that '"a,'' is also 13 percent too low. Therefore, extrapolations of the

curve of growth to the linear or square root regions would involve errors of

not more than 13 percent. ‘ '
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Without very extensive and accurate measurements extending into both
regions of the curve of growth, it would probably be quite difficult to discrimi-
nate between the various line intensity distributions. If measurements are
available in the transition region of the curve of' growth, band model parame-
ters can be obtained which will probably represent the curve of growth with
sufficient accuracy for many purposes. In any event, it must be recognized
that measurements restricted to either of the linear or square root regions
cannot accurately determine the parameter describing the other regions.
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APPENDIX 3-C

. -CRITERIA FOR ACCURACY OF MEASUREMENT OF LINE
STRENGTHS AND MEAN ABSORPTION COEFFICIENTS

" g
i

In this appendix, the errors involved in deducing the value of mean
absorption coefficients and individual line intensities from real spectral data
measured for finite gas samples and recorded with instruments having finite
spectral resolving power are discussed. All spectrometric instruments will
distort the shape of a spectrum to some extent. To a good approximation, the
response of a spectrometer to a spectral input of the form I(w) can usually
be represented in terms of the spectrometer slit function g(w - w"), such
that the signal recorded has the form Is(w) :

[oe]

I(w) = [ Hw)gw - w)dw (3-C-1)
0

where ' is the value of the wavenumber setting on the instrument wavenum-
ber scale. Thus, the spectrometer tends to smear out or average the fine
scale spectral features of I(w) over wavenumber intervals determined by
the spectral width of the slit function g(w' - w). This slit function distortion
usually makes it very difficult to obtain accurate determination of the profile
of an individual spectral line unless instruments having very high spectral
resolving powers are used. However, because the slit function can usually

be represented to a good approximation as a function of the difference between
the actual wavenumber « and the instrumental setting w', the area under
the recorded line profile is equal to the area under the actual profile even
when the slit function width exceeds the characteristic line width:

[e0)

fIS(w')dw = fI(w)dw . (3-C-2)
0 0

Thus, accurate values for equivalent line widths can be obtained using instru-
ments of moderate resolving power and it is usually this quantity (W) that is
available from experiments.
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In a transparent gas, the equivalent width is directly proportional to
the line intensity. However, since all experimental measurements require
gas samples having finite depths, the deduction of the line strength from
experimental data requires some knowledge of the effects of self-absorption,
Criteria for the accuracy of the determination of line strength from measure-
ments of equivalent widths have been explicitly presented by Plass [3-8] for
lines of Doppler or Lorentz shape. For lines of different or undetermined
shape (such as a Q-branch in which the individual lines are'completely over-
lapped), similar criteria would be desirable. In the related problem of a
spectrum in which lines are overlapped but the true absorption coefficient
fluctuates about a mean value, a criterion for the accuracy of determination
of this mean value from a measurement of mean absorptivity would also be
desirable.

First, consider a single isolated spectral line of arbitrary shape
defined by an absorption coefficient k(w), and use the customary definitions:

Line Strength:

s = [ k(w) dw , (3-C-3)
Equivalent Width:

W = f{l - exp [-k(w)ul } dw , (3-C-4)

where u is the optical path in units inverse to those of k(w), and the inte-
grals, for an isolated line are taken from - to +» . The integrand in
equation (3-C-4) is the (monochromatic) absorptivity «(w), and the useful-
ness of equation (3-C-4) (hence, that at the curve-of-growth concept) lies
in the well-known fact [ 3-21] that

W= [o@)d = [o* (v) dw (3-C-5)

is an invariant, where o* (w ) is the absorptivity indicated by a spectrometer
of imperfect, and possibly undetermined, resolution. Another experimentally
determinable quantity is defined:

126



) CHAPTER 3 — CALCULATIONAL
TECHNIQUES FOR HOMOGENEOUS GASES

st = u! [In[l-a* ()] de . (3-C-6)

The quantity S* is dependent on the resolution of the particular spectrometer,
but the inequality

W/u = 8% = S | | (3-C-7)

is always valid. The quantity S* approaches its upper (lower) limit as the
instrumental resolving power increases (decreases).

The fractional error in approximating S by S* is given by e*:
e* = (8-S%)/8 = (S-W/u)/S = ¢, . (3-C-8)

1
For a Lorentz line [using the inequality f(x) = x- 2 x? for the

Ladenburg-Reiche function] , Plass [3-8] obtained (rewriting in terms of the
maximum absorption coefficient)

1
- = - : (=
(s-w/u)/s , k ax L (3-C-9)
that is,
= i = [~ s
ep = qb if k L W= 0.04a . (3-C-10)

A similar criterion has been developed for the Doppler shape [3-8]1. This
criterion is listed in Table 3-C-1, along with criteria for lines of other shpaes,
viz., rectangular, triangular, and exponential shapes (the latter has been
shown to provide a good approximation for the shape of the Q-branches of
certain molecules [3-221).
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All the criteria are similar, and the coefficient of q increases
slightly as the line becomes more sharply peaked. The rectangular line shape
certainly provides an upper limit for a line of any shape whatsoever; however,

the criterion for.a Doppler line should be sufficiently conservative to apply
to any real line of unknown shape.

Next, consider a spectrum defined by an absorption coefficient which
fluctuates with period 6w about an average value k:

k(w) = k [1+f(w)] , ' (3-C-11)

where f f(w) dw = 0. Mean absorptivity is defined as:
dw ‘

& = (bw)™! 6f {1-expl-k(wul}do . (3-C-12)

If the average value of the absorptivity measured by an instrument of finite
resolving power is taken, it is found to be @ » independent of the instru-
mental resolution; hence o is a convenient observable. Next, define

k* = u'(0w)! [ 1nl[1-a* (w)]!dw , (3-C-13)
0w

where o*(w) is the indicated absorptivity as measured by the spectrometer
(a* is dependent on the resolving power). Also, define

ke = u'ln [1-g]™! . (3-C-14)
One finds that the inequality

k, = k* = k ' (3-C-15)
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is valid, where k* approaches the uppér (lower) limit as the instrumental
resolving power increases (decreases).
The fractional error in approximating k by k* is given by e*:

et = (k-k¥)/k = (k-ko)/k = e . (3-C-16)

If the spectrum is composed of lines which overlap considerably, so
that the fluctuation from the average is not large, a good approximation may
be provided by a sinusoidal curve:

k(w) = k (1 +bsinw) , (Ibl<1) . (3-C-17)

In this case, the integration in equation (3-C-10) can be performed yielding
the result [ 3-23]

o = 1-exp (-ku) I,(bku) , (3-C-18)
where I, is a modified Bessel function. Thus, one finds
(k-k)/k = 1n I, (bku)/ku . (3-C-19)

Using the inequality ln Ij(y) = L y% , one finds

4

6 = -}Ib2 ku , (3-C-20)
that is,

e = qa% if ku = 0.04b%q . (3-C-21)
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For exampl_e, for a +50 percent fluctuation in k(w), one has ep = 10
percent if ku = 1.6 (or, interms of the measured quantities, g = 10
percent if either kju or k*u = 1,44). ‘

If one considers square wave forms, saw-tooth forms [in each case

kmax = k(1+b) , kmin = k(1-b), 0 = b = 1], and unsymmetric

rectangular wave forms [in which k = k(1+p), k ., = k(1-1b") where
max min

b = 0, 0 = b'= 1], one obtains the criteria listed in Table 3-C-2.

These expansions are, of course, useful only if it is possible to esti-
mate in some manner the maximum variations of the monochromatic absorp-
tion coefficient from its mean value [3-23]. However, if this is possible, a
suitable model can then be chosen to give an upper limit on the error (e.g.,
the rectangular wave form can always be used to provide a conservative upper
limit).
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TABLE 3-C-1. MAXIMUM,ERROR IN DETERMINING LINE INTENSITY
WITH INSTRUMENT OF FINITE RESOLVING POWER [3-8, 3-23]

i = i =
Line Shape e a% if kmax u
Rectangular 0.02 q
a _

Doppler 0.028 q
Triangularb 0.03 g
Exponenl;ial]O 0.04 q

Lorentz 0.04 q

‘ 1
a. Factor 0.028 = 2(2) /2/100.

b. May be one- or two-sided; not necessarily symmetrical.

TABLE 3-C-2. MAXIMUM ERROR IN DETERMINING MEAN ABSORPTION
COEFFICIENT WITH INSTRUMENT OF FINITE RESOLVING POWER [ 3-23]

Form” of k(w) ep = q% if ku =
Square Wave 0.02 g b2
Rectangular (unsymmetric) Wave 0.02 g (bb')~?
Sinusoidal 0.04 q b~2

b =2
Sawtooth 0.06q9b

a. See text for definitions of b,b'.

b. Not necessarily symmetrical.
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CHAPTER 4
CALCULATIONAL TECHNIQUES FOR INHOMOGENEOUS GASES

A physical situation in which pressure, temperature, and species
concentration vary spatially provides a far more complex computational
problem than one in which these parameters are constant. Unfortunately,
the constant-parameter situation is usually encountered only under elaborate
laboratory conditions, so procedures for calculating radiation from inhomo-
geneous bodies are essential.

Conceptually, the calculation can be performed directly by multiple
integration of the equation of radiative transfer over space and frequency.
In practice, sufficiently detailed spectral information is generally not known;
even if it were known (or assumed) the computing time and cost might well
be prohibitive when the spectrum exhibits considerable fine scale structure.

Hence, a strong need for approximate calculational techniques

which can provide results of acceptable accuracy. Such techniques and rough
tests of their accuracy are presented in this section.
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4.1 EXACT CALCULATIONS

4.1.1 GENERAL CONSIDERATIONS

In principle, exact radiance calculations may be made for any gas
in thermodynamic equilibrium and whose optical properties are known,
When the distributions of pressure, temperature, and concentration are
given explicitly as functions of the path distance u , the equation of transfer
reads:

u
_ 9 o

— 0 :
N (w,u) = ;{O N (w,u') s T (w,u',u) du . (4-1)

Precise calculations of this expression are fi’equently not feasible in
engineering applications since the amount of computer time required to evaluate
equation (4-1) over the entire spectral region of interest is quite often pro-
hibitive. “

In certain special cases, the evaluation of equation (4-1) may be
greatly simplified, e.g., if the absorption coefficient is approximately
constant over a large spectral interval or if the gas is optically thin (i.e.,
the absorptivity is <1 at all frequencies). These cases were discussed
in Chapter 3.

Quite frequently, however, it is necessary to resort to the use of
additional approximations to make equation (4-1) manageable. The methods
discussed in this chapter may be categorized under the general heading of
N-parameter techniques and involve approximations which allow the spatial
integrations and frequency integrations to be carried out separately.

4.1.2 THE N-PARAMETER APPROXIMATION METHODS

The basic difficulty in the numerical evaluation of radiant heat transfer
according to equation (4-1) is associated with the fact that, for each line of
sight, the radiance must be computed at a large number of frequencies, each
frequency involving an integration along the line of sight. After performing
these spatial integrations, the radiance must then be integrated over frequency
to obtain the total heat transfer. To reduce this computational problem to
one of manageable proportions, an approximation procedure is often introduced
to separate the spatial and frequency integrations.
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Here it is assumed that the spectral transmissivity integrated or
averaged over a small set of relatively broad spectral intervals (Aw ) can
be approximated by the form: '

;-w (= —k—wAf Tw &0) = f(Sl,Sz,S3 ...Sn) ’ (4_2)
w

where the parameters s, ..., sn are various integrals or moments of the
gas properties over the line of sight. The functional form f(sy,..., sn) is
generally chosen so that the expression for the mean transmissivity T w when
calculated for a homogeneous volume agrees with one of the band model pre-

scriptions described in Chapter 3.

Most applications of these multiple parameter methods have been
restricted to one or two parameters (N =< 2) . The most commonly used
is a two-parameter method commonly called the Curtis-Godson approximation.
This is described in the following section.
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4.2 THE CURTIS-GODSON APPROXIMATION FOR BAND MODELS

For a homogeneous gas, a useful approximation for the mean trans-
missivity for the statistical Lorentz line band model was given in Section
3.2.5 (a):

r - oxp (k/m ) . (4-3)

where a is the line width to line spacing ratio.

To obtain a two-parameter representation for the mean transmissivity
of a nonhomogeneous volume, it is required that T be expressed in the form

T = £(s4,8)) | (4-4)

where s; and s, are integrals of the gas properties over the line of sight.

It is also required that f(s;,s,) reduce to equation (4-3) for the special case
of a homogeneous gas and that it yield an accurate representation of the mean
transmissivity in the limiting case of very thin and very thick gas volumes.

u _
For an inhomogeneous gas in the weak line limit f k du << 1> ,
0
the mean transmission is given by
u
T = exp |- f k du (4_5)
0
u
and in the collisional strong line limit f (k/4a) du>> 1| by
0
u
T~expl|l- [4 f ka du . (4-6)
0

The requirement that a two-parameter model reduce to these exact
forms in the appropriate limits and that it reduce to the exact expression for
the case of a homogeneous gas essentially specifies s;, s, and the functional
form of f(sy,s,) :
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u
s; ~ | kdu , (4-7)
0 ”
u .
Sy ~ fka du , (4-8)
0
and
51
f(sy,8,) = exp |- _ . (4-9)

‘\] 1+ 812/4:82

This representation is known as the Curtis-Godson approximation for inhomo-
geneous gases and is exact in the limiting cases when all lines are in the
weak line regime or all lines are in the strong line regime. In other regimes,
the approximation introduces an error.

This model is useful when the temperature variation across the slab
is moderate. When large variations in temperature exist along the line of
sight and the relative strength of different spectral lines within the spectral
band of interest change drastically with spatial position, the requirement
that the approximation reduce to the exact expression in the weak line and.
strong line limits may not be strict enough to yield accurate results in the
intermediate regime. This will commonly be the case when there are large
differences in individual line strengths within the spectral band. Polyatomic
molecules such as H,0 and CO, typically exhibit such characteristics at
moderately high temperatures.

To improve the accuracy of calculation for those molecules, a more
detailed model in which the spectral lines are divided into groups so that all
lines in a particular group will have similar strengths and temperature
dependencies may be necessary. The reasonable assumption is also made
that line locations in one group are uncorrelated with those in the others.
The Curtis-Godson approximation is then applied to each line group in turn,
and the net transmission is taken to be the product of the fransmissions
calculated for each of the line groups.

This grouping is best done on the basis of the value of the energy of
the lower state of the transition so that all the lines belonging to one group
have a similar dependence on temperature. With these approximations, the
mean transmission may be determined from the relation

(W
‘[ (w,s)] = ) = , (4-10)
n n *
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where the summed term is the ratio of the equivalent width to mean line
spacing for the nth group. In general it will be found that, when the lines
are divided into a relatively small number of groups, the temperature de-
pendence of all the lines will not be exactly the same and the effective spectral
density of lines of one group will vary somewhat with temperature (and thus
with position).

Using the Curtis-Godson approxima‘ciom1 for each line group separately,
one may express the value of (W/ d)n for the inhomogeneous path in terms of

the curve of growth for equivalent homogeneous paths:

w *
2 -p(xX,a, ,a (4-11)
dn n’ °C,n’"D,n ’ '
*
where Xn is the optical depth for the nth group in the just-overlapping line
approximatior:
‘* .
X = / k_ds , (4-12)
0 )
and a C.n and -éD , 2re mean values for the fine structure parameters:
? b
5 Y
z _ 1 C,n
o.n = B J Pk ds : (4-13)
n 0 n
s vy :
- 1 D
A n " X f — k_ds . (4-14)
n 0 n

Here Yoon and Yp are values for the collision-broadened and Doppler-
> s
broadened half-widths, respectively, and dn is the mean line spacing for

the nth group.

1. Inthe radiant transfer literature, the Curtis-Godson approximation is
usually developed for isolated spectral lines and involves approximations for
average values of individual line strengths and line widths. The development
in this text differs from the usual treatment in that it is applied to groups of
lines and expresses the results in terms of average values for the ratios of
line strength to line spacing (S/d =k) and line width to line spacing
(v/d=a).
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When the line groups are to be chosen on the basis of their having
similar temperature dependencies, it is often convenient to divide the energy
scale into equal increments AE and represent the mean absorption coefficients
for each group in the form: ' ‘

e o]
k =k(w,T)f o DAE/KT )t e"“AE/kT , (4-15)
n n n
n=0
and the line density from
1 e /ayw,T) | (4-16)
dn n 0 ’ .

Here k(w ,T) is the mean absorption coefficient in the interval

Aw [l-i(w ,T) = Z Si/ Aw , where the summation extends over all lines in
i

the interval Aw | , fn and g, are only weakly dependent on temperature and

can usually be taken to be constants, and AE is the line grouping parameter.
When the energy spacing AE and the parameters fn and g, are carefully

chosen, the parameter dy(w ,T) will show only a weak dependence on tempera-
ture and often can be approximated by a constant. However, in general, it is
better to select AE , fn , and gn on the basis of the known spectral properties

gf the molecules in question and then to derive the value of dy(w,T) [and of
k(w ,T)] by fitting detailed theoretical calculations or measurements of the
weak and strong line limits.

For approximate calculations, a considerable savings in computation
time can be achieved by utilizing simple analytic representations of the appro-
priate curves of growth F(X*,a o aD) . Some useful formulas are tabulated
in Section 3. 2. 4.
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4.3 SENSITIVITY ANALYSIS

In many cases, particularly for water vapor, it has been necessary to
derive the appropriate band model parameters directly from experimental
data. Generally, it has not been possible to take high temperature data with
sufficiently high resolution to separate individual lines to measure their
strengths and widths. Even if this were possible, the cost of the experiment
would be high. More commonly, curves of growth are measured at fairly
low spectral resolution. From these latter data, absorption coefficients and
fine structure parameters may be deduced. However, since such fine structure
parameters really have no direct physical meaning and represent some sort
of effective or "average' quantities, it can be dangerous to use these data to
extrapolate to applications which may be considerably different in terms of
pressure, relative concentrations, and degree of inhomogeneity. This is
especially true when the model formalism being used is not obviously reliable
or is clearly oversimplified. Nevertheless, this is essentially what has to
be done in practice. Thus, it is important to establish, for a given formalism,
what sort of errors may be involved. A number of parametric sensitivity
analyses have been carried out to determine the type of errors that might be
expected under various conditions using the simple formalism described in
the previous section. These have included ""numerical'' tests of the statistical
approximation, the Curtis-Godson approximation, the assumptions involved in
the choice of the line widths, the effects of including or not including ''hot'
lines? (i.e., line groups for which n > 1), and the effects of choosing
different curve-of-growth functions.

4.3.1 ERRORS CAUSED BY THE CURTIS-GODSON APPROXIMATION

To obtain an estimate of the error associated with the modified
Curtis-Godson approximation, a simple two-slab distribution is treated.
First, consider a difference in the line density in the two slabs. Here the
front layer, which is assumed to have a low temperature, is assumed to
have only one spectral line in the interval under consider'atiqn; whereas, in
the rear high temperature section of the gas, the oscillator strength of this
line is presumed to be divided among n equally intense lines, one of which
coincides with the original line. The remaining ones are new and d1splaced
hot lines. Since the primary interest is in the effect of the variable line
spacing term, one assumes the line width to be the same in both sections.

2. '"Hot'" lines are those showing a very rapid increase in strength with
increasing temperature and thus contribute to emission from the high
temperature regions of the gas but do not appreciably absorb in the low
temperature regions.
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In Figures 4-1a and 4-1b, the Curtis-Godson estimate is compared
to the exact value of the emission from the rear layer as a function of both
the depth of the rear layer and the thickness of the front layer. By referring
to these figures, one can see that the line density variations are reasonably
accounted for by the Curtis-Godson approximation so long as the mass in
the rear layer is not too smal’ The error does not appear to be strongly
dependent on how many new lines appear as long as there is at least one. The
fact that the errors become large when the mass of the emitting layer becomes
small compared to that of the absorbing layer is characteristic of the Curtis-
Godson approximation and is associated with the fact that the-line width and
line spacing ratios are mass-averaged.

The effects of varying line widths are shown in Figures 4-2 and 4-3.
In Figure 4-2 the Curtis-Godson approximations for the total equivalent width
of a two-slab volume are shown for Lorentz and Doppler lines. It is apparent
that the Curtis-Godson approximation yields reasonably accurate estimates so
long as the variation in line width is not excessive (<500 percent for a Lorentz
line and <50 percent for a Doppler line). The emission from a hot region
located behind a cool absorbing layer is more sensitive to differences between
the line widths in the two slabs (Fig. 4-3). The worst case occurs when the
emission width is small and the absorption path is large. In this case, for
Lorentz lines, errors greater than a factor of two can occur. Again, however,
the errors are relatively small when the thickness of absorber is not too large
compared to that of the emitter.

4.3.2 ERRORS RESULTING FROM THE USE OF THE RANDOM
MODEL AND SIMPLIFIED CURVES OF GROWTH

The validity of the random band model is fairly easily tested experi-
mentally. It is well known that, for Lorentz lines, the random model predicts
that the logarithm of the low resolution transmission of a cell of absorber
should be exactly linear in the pressure so long as the cell length, temperature,
and mole fractions of the various species are held constant. This is not true
of other models. For example, an Elsasser model predicts a linear dependence
at high transmission, changing over to a quadratic dependence at low trans-
mission. Examination of data taken by Burch [4-1, 4-2] and by Simmons [4-3]
indicates that, for temperatures above 600K, the random model is consistent
with the data within experimental scatter. However, since the measurements
used in these data cover a limited range of pathlengths and pressures, it is
desirable to obtain additional confirmation. To accomplish this and also to
test the data reduction procedure used for interpreting laboratory data to
derive appropriate band model parameters for inhomogeneous radiance calcu-
lations, the following numerical ""experiment'' has been carried out. The
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Figure 4-1a. Effect of hot lines on the emission from a high temperature
gas viewed through a cool absorbing layer. (The ordinate is the ratio
of the radiance of two temperature slabs computed in the Curtis-Godson
approximation to the exact value. The abscissa is the ratio of the mass
of the high temperature rear slab to that of the low temperature front
slab. In the rear slab two equally intense lines are excited; whereas,
in the front slab, all the line strength is concentrated
in only one of the lines. )
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Figure 4-1b. Effect of hot lines on the emission from a high temperature
gas viewed through a cool absorbing layer. (This figure is the same as
Figure 4-1a except that the single line in the cool section is divided into
eight equally intense lines in the hot section,
one of which is the original line. )
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Figure 4-2. Accuracy of the Curtis-Godson approximation for evaluating
total equivalent absorption widths for a two-slab gas. (The solid lines
represent the exact values and the points represent the values given by

the ‘Curtis-Godson approximation. The two slabs have the same masses

but different line half-widths. ) ‘
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Figure 4-3. Accuracy of the Curtis-Godson approximation for evaluating
the equivalent emission width of a Lorentz line for a two-slab gas when
only the rear slab radiates. (The abscissa is the ratio at the line cenfer
of the optical depth of the rear slab to that of the front slab. )
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quasi-random band model procedure (see Section 3. 2.4. 2) with a 1 cm"1

cell size was used to calculate the transmission of various pathlengths between
0 and 10 meters of water vapor at one atmosphere pressure and at various
temperatures. These data were then degraded spectrally with a triangular

slit function of 25 ecm™! half-width. These resulting low resolution data were
then reduced by experimental data analysis procedures to obtain values for the
mean absorption coefficient and the fine structure parameter (a =v/d), that
is, by fitting the experimental curves of growth with a Ladenburg-Reiche
function. ‘

To test the inhomogeneous formalism, two sets of calculations were
carried out. The radiances of various two-slab volumes were calculated with
the low resolution (MLG) model described in Section 5. 3 using these
"experimentally' derived band model parameters. In Figures 4-4 and 4-5,
these data are compared to the values obtained from a direct quasi-random
band model calculation of the inhomogeneous path (using the normal Curtis-
Godson approximation to evaluate the effective half-widths). The calculations
were carried out for a range of slab thickness between 0 and 10 meters and
pressures between 0,1 and 1 atmosphere. Figure 4-4 shows that, when the
temperature varies by less than a factor of two, the two calculations agree
quite well — even when all the lines are assigned a uniform average intensity
(AE =o), The data in Figure 4-5 indicate, however, that when the front
layer is at a very low temperature, sizeable errors may be incurred when the
cold layer is appreciably absorbing if hot lines are not considered.

4.3.3 CHOICE OF THE CURVE OF GROWTH

It is well known that, for a homogeneous volume of gas, the curves of
growth for collision-broadened lines are not very sensitive to the distribution
of line intensities. This is demonstrated in Figure 3-2.

To study the effect of hot lines in a more reasonable inhomogeneous
flow field, some calculations were carried out for a temperature and concen-
tration distribution characteristic of a constant pressure turbulent flame.
Here the temperature distribution was assumed to be bell-shaped and the
water vapor mole fraction to be either similarly bell-shaped or to be uniform
(Fig. 4-6). In Figure 4-7, the calculated radiances for three models are
compared. In the first (f; =g, = 1 and all other fandg = 0), all the lines

are assigned a uniform average intensity (SLG model described in Section 5. 3),
the second ( g, = fn =1 for all n) roughly corresponds to an S~! distribution

(MLG model described in Section 5. 3), and the third (fn, g, variable) is
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Figure 4-4. Effect of the choice of the line grouping parameter AE on
the calculated emission of a two-slab gas when the temperature variations
are moderate. (The points represent the ratios of the predicted low
resolution radiance to the ""exact'' values for various combinations of
pressures and slab thicknesses. The pressures varied from 0.1 to 1
atmosphere and the slab thicknesses from 0 to 10 meters. The abscissa
is the transmission of the front slab for grey radiation. )
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Figure 4-5., Effect of the choice of the line grouping parameter on the
calculated emission of a two-slab gas when the front slab has a low
temperature. (Here the abscissa is the transmission of the front slab
for the radiation emitted by the rear slab. )
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deduced from detailed line strength calculations by fitting the MLG model
described in Section 5.3 to the calculations.® In all cases the line density and
the mean absorption coefficients were normalized so that each model gave the
same answer for a homogeneous path in the optically thin limit and in the
square root limit.

The characteristic widths of the temperature profile varied from 1 to
10 meters at 1 atmosphere pressure to 10 to 100 meters at 0. 01 atmosphere.
Two peak temperatures were considered: 1900K and 1000K. TFigure 4-7 shows
that the computed radiances for the second and third cases do not differ by
more than 30 percent except at the lowest pressure (where Doppler broadening
is important) or when the gas is highly opaque. However, considerable error
can occur when the first (and simplest) model is used (f; = g, = 1 and all
other fn and gn are 0) .

There is little information available for individual collision line widths
at high temperature. However, the calculations do not appear very sensitive to
variations in the widths of the hot lines so long as the low resolution curves
of growth can be measured for homogeneous paths. A decrease of a factor of
two in the width of the hot lines caused the computed radiances for these
particular inhomogeneous paths to change by less than 11 percent.

3. Malkmus, W., Private communication.
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Figure 4-6. Temperature and concentration profiles used to compare
various radiance models (see Fig. 4-7).
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Figure 4-7. Effect of model complexity on the computer radiance for the
gas profiles shown in Figure 4-6. (The squares, triangles and circles
correspond to pressures of 1, 0.1, and 0.01 atmosphere, respectively.

The abscissa is the transmission of the entire volume for grey radiation. )
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4.4 SUMMARY

These sensitivity analyses give some indication of the absolute
accuracy that may be expected in numerical band model calculations of the
infrared radiant heat transfer from typical combustion gases. Although it
was found that the use of different models for the curves of growth and the
use of the Curtis-Godson approximation can result in errors of a factor of
two or more in some cases, these large errors occur only in rather unique
situations, such as a short hot path being viewed through a long cool absorber.
The larger errors for inhomogeneous paths tend to occur at very low pressures
and/or when the total transmission along the line of sight is small. For more
moderate conditions, ‘the errors tend to be less than about 30 percent. This
is comparable to our present uncertainty in the absolute value of typical
absorption coefficients (e.g., for water vapor).

In practical numerical computations it is recommended that the
radiance computations include or be preceded by spot checks of the net
transmission, or the mean pressure, and of the temperature variation along
representative lines of sight. These numbers and the data presented in this
chapter can be used for rough estimates of the expected accuracy of the
calculation. Also, it is recommended that before extensive numerical
computations are carried out with a given model, preliminary calculations
be carried out for representative lines of sight to select the simplest band
model representation and the minimum spectral (and spatial) resolution
required to achieve the desired accuracy.
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CHAPTER 5

REPRESENTATIONS FOR SPECIFIC MOLECULES

In this section, the data available for various molecules are discussed
individually. The theoretical treatments for calculating the absorption prop-
erties are briefly reviewed in each case, and the data needed for constructing
band model representations are summarized in graphical form, (Tabular data
are presented in the General Appendix for all species. )

At the end of the section, a detailed series of reference tables and
charts summarizes the recommended band model procedures for each mole-
cule: curves of growth, absorption coefficient models, and line width and line
spacing models.

An explanation of the format and nature of the data presented in this
section is in order. In much of the theoretical literature on infrared charac-
teristics of molecules, it has been common practice to present the results of
the calculations in two limiting cases: the weak-line limit, and the strong-
line limit for collision-broadened lines. These two regimes are of particular
value for data presentation since the dependence on pathlength, concentration,
and total pressure are factors in the expressions for the logarithm of the
transmissivity, In other regimes, such as the low-pressure (Doppler) limit,
such scaling is not possible and data are commonly presented for specific
pathlengths, temperatures, and pressures.

An attempt has been made to present the available data in two formats:
(1) the data specifically required for constructing band model representations
of the smoothed spectra (mean absorption coefficients, curves of growth,
spectral line densities, and line widths), and (2) where appropriate and where
the data are available, extensive graphical presentations of computed spectral
emissivities and integrated absorptivities for various combinations of path-
length, concentration, temperature, and pressure have been included (Chapter
6). These latter data are useful for obtaining quick rough estimates of the
emissivity or absorptivity in special cases. These curves can often also be
used as a guide for determining the level of sophistication required in the band
model representation for specific numerical calculations.
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5.1 DIATOMIC MOLECULES
5.1.1 MEAN ABSORPTION COEFFICIENTS AND LINE SPACING
(THEORY)

[

A first approximation to the infrared spectral emissivity of a diatomic
gas can be made by assuming a harmonic oscillator model [ 5-1] for the mole-
cule. This has the advantage of simplicity, but the very nearly symmetric
intensity distribution which it yields about the band center does not closely
match the asymmetric shape which is found experimentally or calculated by
a line-by-line method.

To improve the approximation, a model of an anharmonic oscillator
with the first approximation to the vibration-rotation interaction can be used.
This will improve the approximation to the actual spectral emissivity without
resorting to the more detailed approach of considering the emission from each
individual spectral line. ~

The procedure used in this text to evaluate the mean emissivity and
transmissivity functions for diatomic molecules may be briefly summarized
as follows. (For a more detailed description, see Appendix 5-A and Refer-
ence 5-2,) For a specific vibrational transition (v— v+ 1), the frequency
of emitted radiation is expressed as a quadratic function of the rotational
quantum number m, which is solved to express m as a function of w. This
expression is substituted for m in the equations used for computing the
average line intensity S(w) and average line spacing d(w) so that S(w)
and d(w) become explicit functions of w. The line spacing for the v — v+ 1
band in the neighborhood of the frequency w is given formally by [ 5-2]

-1

dw

dzlg_mm

R

‘ 2 1/
2{[(Be - oze(v+1)] - ae(w-wv)} 2 . (5-1)

Here B and a, are the usual spectroscopic constants (see Chapter 2),

is the wavenumber of the band origin, and v is the vibrational quantum num-
ber of the lower vibrational state of the transition.
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For some sufficiently large value of w, d— 0, and a "band head" is
formed in the R-branch. Note that two sequences of lines extend down from
the band head: the main sequence (the P-branch and main portion of the R-
branch) and the returning portion of the R-branch. This latter sequence is
usually only of importance at the highest temperatures.

+1(~
The line strengths in the main sequence are denoted by S:: ( )(w)

H il . +
and those in the returning R-branch by S‘;H'l( )(w) [5-2]. Expressions

v+1(-)
v
in the two sequences are identical at any value of w.

S (w) and S;H-l (+) (w) are given in Appendix 5-A. The line spacings

5.1.2 RANDOM REGULAR (ELSASSER) MODEL

If the mean spectral properties of each sequence of each band are
represented by the Elsasser model (Section 3.2.1.1), the composite effect
of both sequences of all bands can be well represented [ 5-3, 5-41 by the
random Elsasser model [equation (3-54)]:

@) = 57,9 @7 P

+)

with lines of strength S:ﬂ (+) (w) , spacing dv(w) , and half-width y, from

where ;v (w) represents the mean transmissivity of an Elsasser band

equation (3-22) in which

k) = ¥ () /4 () (5-2)

and

B, = 27ry/dv(w) .
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5.1.3 RANDOM MODEL
In the event that the effects of overlapping of lines in the same sequence

can be ignored, the mean transmissivity may be determined from the equiva-
lent width of a single line, i.e.,

@) w ) w)
'Tv (OJ) =1 - d (w) ) ’ (5_3)
v

in which, from Section 2.2.1.3.1,

w (W) = 2my i, Doemy) (5-4)
where

f(x) = xe "[L(x) + I(x)] .
Thus, the mean transmissivity of the band system is given by

WV(")(Q) Wv(‘+) (@)
Flw) = O|1 - ——7—— 1 - ———— ’ (5-5)
d_(w) d (@) |

which in the limit of large v becomes

i wv(')(w) + wv(+)('w)

T(w) = exp |- (5-6)

v dv(w) .

This equation is the same as for a random model, in which all line positions
are only statistically defined.
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In the event that partial overlapping between adjacent lines in the same
sequence occurs, the Elsasser or Golden functions (Appendix 3-A) should be

used to compute ’Tv(i) (w) when high accuracy is required. However, for

many cases, particularly those involving heat transfer, sufficient accuracy
(< 10 percent error, see Appendix 3-B) can be obtained by using the totally
random model [equation (5-6)]. When suitable simplified forms for the line

equivalent widths (Wv(i)) are available, this procedure yields fairly accu~

rate values for the mean transmissivity [7(w)] for a low computational cost.

In'the remainder of this section, the prescriptions and data needed for
carrying out rapid calculations of the emission and transmission of homoge-
neous and inhomogeneous volumes of gas are presented. In general, these
procedures are band model techniques which utilize tabular data for the mean
absorption coefficient k(w) and the line density 1/d(w). For diatomic
molecules at moderate temperatures, the spectra are sufficiently simple that

v+1 (£)
v and 1/ d, (w)
may be preferable to using table look-up procedures, both because of the
simpler numerical procedures involved and because of the greater accuracy
obtainable. For polyatomic molecules, however, the spectra are much more
complex and the use of tabular data is often more efficient.

direct computation with the explicit formulas for S

The procedures using the direct formulas for va+1 () (w) and

dv(w) for diatomic molecules are summarized in Appendix 5-A.

5.1.4 LIMITING FORMS FOR THE MEAN SPECTRAL TRANSMISSIVITY

In the weak-line approximation, the transmissivity has the form

sg’“(‘)(w) . S;"l(-f)(w)

Fw) = exp {- | 2 ) u . (5-7)

where the quantity u factors out of the summation over v to yield

T(w) = expl-k(w)ul , (5-8)
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where the local mean absorption coefficient

v+1(-)

R(w) = ) |

(@) + va+1(+)(;u) :
3,(@)

is a function of w, independent of u.

5.1.4.1 Collision-Broadened Lines

In the strong-line limit for collision-broadened lines, the mean trans-
missivity is given by

vi1(=) Y. + (V) 1/jI‘
T(w) = exp ~2(yu)1/2 ;[(SV ( )) 2 . (Sv ( )) 2

(5-9)

where a uniform line width y is assumed for all lines in the band. Again,
the quantity u factors out of the summation over v,

Results of theoretical calculations have commonly been given in the
infrared literature in terms of a mean absorption coefficient k, defined by

Sv+1(_)(w) L 5716 )

k= (570 = ) | = — (5-10)

- .
and a mean strong-line parameter (S / /d) defined by

| %wuﬁwﬂ%+quﬂwJ%
Ty M \ v |
s2/d = ), <

(45-11)
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Graphical or tabulated values of these quantities can be used to construct band
model representations for collision-broadened lines.

An equivalent strong-line parameter (-171') may be defined:
JE— I/ \2 —_—
(1/d) = (s 2/d> (574) . (5-12)

The parameters (S/d) (or _12) and (1/d) for various molecules are pre-
sented in graphical form in this chapter and in tabular form in the General
Appendix.

5.1.4.2 Doppler-Broadened Lines

The equivalent width of an isolated line of integrated intensity S with
Doppler shape is given [ equation (2-B-1) and following] by:

W = Su i ()" . (5-13)

n=0 (n+1)! Nn+1

Results of calculations for Doppler-broadened lines have generally
been presented directly in terms of the spectral emissivity or transmissivity.
The simplified band model representations such as those given at the end of
this section are generally based on fits to the weak line and strong collision-
broadened line calculations {or measurements) and do not usually rely on
the pure Doppler calculations. For applications involving very low pressure,
it is often advisable to check the accuracy of such simplified band model
prescriptions against the detailed numerical calculations for pure Doppler
lines.

5.1.4.3 Regions of Validity

A detailed discussion of the range of validity of the various approxi-
mations is given by Plass [5-3, 5-4]. An example from this work illustrated
in Figure 5-1 indicates regions of validity for a statistical band model. When
the ranges in Figure 5-1 are applied to pure CO with ew = 0.6, the results

indicate that the weak 1ine.approximation is accurate within 10 percent when
B (=2my/d) > 3. [This requires the pressure to be above some minimum value
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Figure 5-1. Regions of validity for three different approximations of
absorption as a function of 8§ and x. (The statistical model with
all lines of equal intensity was assumed. Within the indicated
regions, the given approximation is accurate within
10 percent. )

which is largest (p & 50 atm) when T ~ 1200K.] The strong approximation

for this example is accurate within 10 percent when B8 < 1. (For T = 1200K,
this implies a maximum p ~ 17 atm.) A lower limit to the validity of the
collisional strong line approximation is imposed by the presence of Doppler
broadening. The Doppler and Lorentz widths are comparable for p » 1/2 atm
at T ~ 1200K. If the Doppler width is less than the Lorentz width, the maxi-
mum effect of Doppler broadening on the equivalent width is less than 10 percent.

For pure HF, the collisional strong-line approximation may be used
for pressures up to a certain value (a maximum p~ 35 atm for T = 3000K)
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and above a minimum determined by the Doppler broadening. (The Doppler
and Lorentz widths are comparable for p~ 0.4 atm and T =~ 3000K.)

5.1.5 DATA FOR DIATOMIC MOLECULES

In this section the basic data required for constructing band models
are summarized for six diatomic molecules (CO, NO, CN, OH, HCl, and
HF). These data include tables of band strengths and line half-widths, and
graphical presentations of mean absorption coefficients (k) and mean line
densities (1/d). The absorption coefficients and line densities are given in
tabular form in the General Appendix.

5.1.5.1 CO Data
Measured band strengths and line half-widths for CO are tabulated in
Tables 5-1 and 5-2 respectively. Calculated values for the mean absorption

coefficient k and for the line density parameter (1/d) are shown in Figures
5-2 and 5-3, respectively.
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TABLE 5-1. CO BAND STRENGTHS (cm™%atm™! at STP)

Fundamental First Overtone Second Overtone
(2143 cm™) (4260 cm™!) (6350 cm™1) Source
258 + 4 1.78 Armstrong and Welsh (1965)%
236 1.66 + 0.33 Benedict et al. (1962)b
289 + 30 2.3 + 0.3 Breeze and Ferriso (1965)°
260 Burch and Williams (1962)d
238 Coulon et al, (1954)°
419 + 82 2,3+0,5 Dinsmore and Crawford (1949)f
2,51 + 0, 50 0.008 + 0,008 Dinsmore (1949)®
280 Havens (1938)h
1,95+ 0.10 Kostkowski and Bass (1961)i
259 Locke and Herzberg (1953)j
394 5.13 Matheson (1932)k
1.66 Oppenheim and Goldring (1962)1
260 + 13 1.83 + 0,09 Penner and Weber (1951)™
0.0104 0. 001 Plyler et al, (1952)"
2.15 £ 0,10 0.0127 + 0.0013 Schurin and Ellis (1966)°
262 1.83 Vincent-Geisse (1954)F
1.73 % 0,17 Vu et al. 2
260 2.2 0.011 Recommended Values

a. R. L. Armstrong and H., L., Welsh, Can. J. Phys., no., 43, 1965,

p. 547,

b. W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Astro-
phys. J., no. 135, 1962, p. 277.
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J. C. Breeze and C, C. Ferriso, J. Chem. Phys., no. 43, 1965,
p. 3253.

D. E. Burch and D. Williams, Applied Optics, no. 1, 1962, p. 587.

R. Coulon, L. Galatry, B. Oksengorn, S. Robin, and B. Vodar, J. Phys.
Radium, no. 15, 1954, p. 641.

H. L. Dinsmore and B. L. Crawford, Report NR-109-104, University
of Minnesota, October 1949, ‘

H. L. Dinsmore, dissertation, University of Minnesota, 1949.
R. J. Havens, dissertation, University of Wisconsin, 1938.

H. J. Kostkowski and A. M. Bass, J. Quant. Spectry. Radiative Trans-
fer, no. 1, 1961, p. 177.

J. L. Locke and L., Herzberg, Can. J. Phys., no. 31, 1953, p. 504.
L. A. Matheson, Phys. Rev., no. 40, 1932, p. 813.

V. P. Oppenheim and H. Goldring, J. Quant. Spectry. Radiative Trans-
fer, no. 2, 1962, p. 293.

S. S. Penner and D, Weber, J. Chem. Phys., no. 19, 1951, p. 807.

E. K. Plyler, W. S. Benedict, and S. Silverman, J, Chem. Phys.,
no. 20, 1952, p. 175,

B. Schurin and R. E. Ellis, J. Chem. Phys., no. 43, 1966, p. 2528.
J. Vincent-Geisse, Compt. Rend., no. 239, 1954, p. 251.

H. Vu, M. R. Atwood, and B. Vodar, J. Chem. Phys., no. 38, 1963,
p. 2671.
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TABLE 5-2. CO MEAN LINE HALF-WIDTHS (cm~'atm~! at 300K)%
Broadener
co N, 0, H, CO, H,0 Source
1.02x be 0. 85x Burch et al.b’c
y 0. 87y 1.25y Cross and Datnielsb’d
0. 042 0.043 Penner and Webere
0.105 Locke and Herzberg (1953)f
0. 061 0. 064 Weber and Penner (1952)%
0.064 Vincent-Geisse (1954)h
0,055 0.054 0.045 0,057 0.068 Eaton and Thomson (195’:))i
0.069 Kostowski and Bass (1961)j
0.058 Benedict et al. (1962)k
0.072 Hoover and Williams (1969)1
0.06 0.06 0.05 0.06 0.07 (0.06) Recommended Values
(Estimates in parentheses )

a. These data represent mean values averaged over the entire band. For

measurements of individual line half-widths, see Eaton and Thomson(l)
1
Benedict et al. (k), and Hoover and Williams( )

b. Only the ratio of the line width to the pure nitrogen broadened line width
was measured. The quantities x and y refer to the undetermined Ny-
broadened line half-widths.

c. D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and
D. Williams, AFCRL-62-698, 1962.

d. P. C. Cross and F, Daniels, J. Chem. Phys, no. 2, 1934, p. 6.

e. S. S. Penner and D, Weber, J, Chem. Phys., no. 19, 1951, p. 807.
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J. L. Locke and L.. Herzberg, Can. J. Phys., no. 31, 1953, p. 504.
D. Weber and S. S. Penner, J, Chem. Phys., no. 21, 1953, p. 1503.
J. Vincent-Geisse, Compt. Rend., no. 239, 1954, p. 251.

D. R. Eaton and H. W. Thompson, Proc. Roy. Soc. A., no. 251, 1959,
pp. 458 and 475,

H. J. Kostkowski and A. M, Bass, J. Quant. Spectry. Radiative Trans-
fer, no. 1, 1961, p. 117.

W. S. Benedict, R. Herman, G. E. Moore, and S, Silverman, Astro-
phys. J., no. 135, 1962, p. 277.

G. M. Hoover and D, Williams, J. Opt. Soc. Am., no. 59, 1969, p. 28.
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10. £
B co
T = 3000K
2400
1. 18
— 1200
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E .
- 300
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1 1 . 1
1500 2000 2500
WAVENUMBER (cm-1)
Figure 5-3. Line density for CO.
5.1.5.2 NO Data

Measured band strengths and line half-widths for NO are tabulated

in Tables 5-3 and 5-4, respectively. Calculated values for the mean absorp-
tion coefficient k and for the line density (1/d) are shown in Figures 5-4
and 5-5, respectively,
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TABLE 5-3. NO BAND STRENGTHS (cm~’atm™' at STP)

Fundamental First Overtone Second Overtone
(1876 cm-?) (3724 cm™!) (5544 cm™1) Source
122 + 6 Abels and Shaw (1966)%
76+ 7 2.8+ 0,5 Breeze and Ferriso (1964)b
145 + 29 2.57 + 0. 51 0.015 £ 0,015 Dinsmore (1949)°
124 + 22 Feinberg and Caméc (19(:‘.7)d
115+ 9 Ford and Shaw (1965)°
70 to 77 Fukuda (1965)f
121 Havens (1938)%
138+ 6 James (1964)h
1.66 0.035 Meyer et al. (1965 )].L
70 £ 7 2,3+ 0.6 Penner and Weber (1953)j
111 = 7 Schurin and Clough (1963)k
2,11 £ 0,10 0.0458 = 0.0046 Schurin and Ellis (1966)1
128 £ 10 Varanasi and Penner (1966)™
82 Vincent-Geisse (1954)"
132 2.2 0. 044 Recommended Values

a. L. L. Abels and J. H., Shaw, J. Molecular Spectroscopy, no. 20, 1966,
p. 11.

b. J. C. Breeze and C. C. Ferriso, J. Chem. Phys., no. 41, 1964, p. 3420.
c. H. L. Dinsmore, dissertation, University of Minnesota, 1949,

d. R. M. Feinberg and M. Camac, J. Quant. Spectry. Radiative Transfer,
no. 7, 1967, p. 581.

€. D. Ford and J. H. Shaw, Bull. Am. Phys. Soc., no. 10, 1965, p. 636.
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K. Fukuda, J. Chem. Phys., no. 42, 1965, p. 521.
R. J. Havens, dissertation, University of Wisconsin, 1938.
T. C. James, J. Chem, Phys., no. 40, 1964, p. 762.

C. Meyer, C. Haeusler, and P. Barchewitz, J. Phys. (Paris), no. 26,
1965, p. 305.

S. S. Penner and D, Weber, J. Chem. Phys., no. 21, 1953, p. 649.
B. Schurin and S. A. Clough, J. Chem. Phys., no. 38, 1963, p. 1855,
B. Schurin and R. E. Ellis, J. Chem. Phys., no. 45, 1966, p. 2528.

P, Varanasi aﬂd S. S. Penner, J. Quant. Spectry. Radiative Transfer,
no. 7, 1967, p. 279.

J. Vincent-Geisse, Compt. Rend., no. 239, 1954, p. 251.
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TABLE 5-4. NO MEAN LINE HALF-WIDTHS (cm™!atm™! at 300K)

Broadener
NO N, 0O, H, CO CO, H,O Source
0.055 Abels and
Shawa
b
0.043 Penner

0.05 | (0.05) | (0.04)| (0.05) | (0.05) | (0.05) (0.05) | Recommended
Values '
(Estimates in
Parentheses )

a. L. L. Abels and J. H. Shaw, J. Molecular Spectroscopy, no. 20, 1966,
p. 11.

b. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities,
Addison-Wesley Co., Reading, Mass., 1959,
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10

NO

1/d (cm)
T T TTTT]
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0.1

1000 1500 2000
WAVENUMBER (cm™1)

Figure 5-5. Line density for NO.
5.1.5.3  CN Data
Measured band strengths and line half-widths for CN are tabulated in
Tables 5-5 and 5-6, respectively. Calculated values for the mean absorption

coefficient k and for the line density (1/d) are shown in Figures 5-6 and
5-7, respectively.
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TABLE 5-5. CN BAND STRENGTHS (cm~%atm~' at STP)

First Overtbne

Fundamental Second Overtone
(2042 cm™!) | (4058 cm™) (6048 cm~1) Source
(110) (2.3) (0.044) Recommended Values

(Estimates in
Parentheses )

TABLE 5-6. CN MEAN LINE HALF-WIDTHS (cm~'atm™' at STP)

Broadener
CN Other Source
(0.05) (0.05) Recommended Values
(Estimates in parentheses)
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Figure 5-6. Absorption coefficient for CN at standard
temperature and pressure.
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5.1.5.4 OH Data

Measured band strengths and line half-widths for OH are tabulated in

Tables 5-7 and 5-8, respectively. Calculated values for the mean absorption

coefficient k and for the line density (1/d) are shown in Figures 5-8 and
5-9, respectively.

TABLE 5-7. OH BAND STRENGTHS (cm~2atm-! at STP)

Fundamental First Overtone
(3570 cm™ 1) (6974 cm™1) Source
(110) (4.4) Recommended Values
(Estimates in parentheses)

TABLE 5-8. OH MEAN LINE HALF-WIDTHS (cm-latm~! at STP)

Broadener
OH Other Source
(0.5) (0.05) Recommended Values
(Estimates in parentheses)
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10. [
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WAVENUMBER (cm™)
Figure 5-9. Line density for OH.
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5.1.5.5  HCl Data

Measured band strengths and line half-widths for HCl are tabulated in
Tables 5-9 and 5-10, respectively. Calculated values for the mean absorption
coefficient k and for the line density (1/d) are shown in Figures 5-10 and
5-11, respectively. '

TABLE 5-9. HCl BAND STRENGTHS (cm~%atm~! at STP)

Fundamental | First Overtone

(2886 cm~') - (5668 cm~—?) Source

157 £ 6 ‘ : : Babrov et al. (1959)5L

143 + 8 . 38.15 Benedict et al. (1956)b
174 + 33 4.00 £ 0.33 Penner and Weber (1953)°
155 3.8 Recommended Values

a. H. Babrov, G. Ameer, and W, Benesch, J. Mol. Spectry., no. 3, 1959,
p. 185.

b. W. S. Benedict, R. Herman, G. E. Moore, and S. Silverman, Can, J.
Phys., no. 34, 1956, p. 850.

c. S. S. Penner and D. Weber, J. Chem., Phys., no. 21, 1953, p. 649.
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TABLE 5-10. HCl MEAN LINE HALF-WIDTH (cm~!atm-! at STP)

Broadener

HCl

Ne

Kr

Source

0. 13-
0.25

0.028‘
0.11

0.025

0.02

0.01-
0.05

0.02-
0.07

0.07-
0. 025

Babrovaet al.
(1959)

Tipping and
Herman

(1970)b

0.2

(0.05)

Recommended
Values
(Estimates in
Parentheses)

a. H. Babrov, G. Ameer, and W. Benesch, J. Mol. Spectry., no. 3,

1959, p. 185.

b. R. H. Tipping and R. M. Herman, J. Quant. Spectry. Radiative Trans-
fer, no. 10, 1970, p. 881.
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Figure 5-10. Absorption coefficient for HC1 at standard
temperature and pressure. ,
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Figure 5-11.
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5.1.5.6  HF Data

Measured band strengths and line half-widths for HF are tabulated in
Tables 5-11 and 5-12, respectively. Calculated values for the mean absorp-
tion coefficient k and for the line density (1/d) are shown in Figures 5-12

and 5-13, respectively.

TABLE 5-11. HF BAND STRENGTHS (cm~%atm=! at STP)

Fundamental First Overtone
(3962 cm™!) (7751 ecm™t) Source
453 | Kuipers (1958)%
450 (11) Recommended Values
(Estimates in Parentheses )

a. G. A, Kuipers, J. Mol. Spectry., no. 2, 1958, p. 75.

TABLE 5-12. HF MEAN LINE HALF-WIDTHS (cm~'atm™' at STP)

Broadener
HF Other Source
0.07-0. 51 (at 390K) Kuipers (1958)"
0.05 (0.05) Recommended Values
(Estimates in Parentheses)

a. G. A. Kuipers, J. Mol. Spectry., no. 2, 1958, p. 75.
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5.2 POLYATOMIC MOLECULES

5.2.1 CARBON DIOXIDE (CO,)

The linear symmetric molecule CO, has three degrees of freedom
associated with vibration., The first, a symmetric vibration in which there
is no change in electric dipole moment, is infrared inactive. The second is
a doubly degenerate vibration described by the quantum number vy. The
level determined by v, has a degeneracy of v, + 1. A second quantum
number, £, which represents the angular momentum associated with vibra-
tion and which can assume values of vy, v9~2, . . ., 1 or 0, partially
resolves the degeneracy; a level described by v, and £ is either singly or
doubly degenerate, depending on whether £ =0 or £> 0. Transitions for
which v, and £ change by unity and v; and v; do not change are respon-
sible for the 15-u band of CO,. The third is an unsymmetric vibration
described by the quantum number vy. The transitions for which v; changes
by unity but the other quantum numbers do not change give rise to the 4.3-u
band.

The gross structure of a C02 vibration-rotation band for which Al =0,
such as the 4.3-u band, is quite similar to that of a diatomic molecule, so
the equations previously developed for diatomic molecules can be used, with
only slight modifications, for CO,, Thus, in the weak-line approximation,
the equations previously developed for diatomic molecules can be used directly
by replacing the single summation over v by a double summation over v
and vy, Specifically, in the weak-line approximation, the emissivity is
given by ’

¢ = 1-exp [-u m] (5-14)

w

where

sovas - Sy s (), ) (,, .
S(w)/d(w) —.VF:_O V;O[SWS (@) + 8,57 ( )]/dws( ) .

Hence, using the random Elsasser model and approximating the error
function by the exponential function (Section 5.1.3), or, equivalently, assuming
the statistical model, one obtains
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¢, = 1-ew [ 2 (yu) " s%(wvd(w)} T CE
where
—— 2 a2 anAo 1 Lwol”
2 = (=g - w w W) .
she)/ae) = L ngzo(zg) [va?, ( ﬂ : [vaa, ( )} yy, @)

For temperatures less than several hundred degrees Kelvin, it is
feasible to perform line-by-line calculations for CO,. Measured values for
the absolute band intensity, theoretical values for the relative rotational
intensity in individual bands, and the spectral locations and widths of the
spectral lines can be used to synthesize a high-resolution spectrum.

This approach is useful when only a few temperature and pressure
profiles are required, and it has been used, for example, to obtain rather
precise representations of the spectral transmission of the planetary atmos-
pheres. However, the rapid increase in line density with temperature
usually leads to the use of band model procedures at intermediate tempera-
tures (see Section 6.1.2).

Theoretical calculations of band model parameters have been performed
for CO, for temperatures up to 3000K. Many of these results have been
verified by experiment (see Section 7). These calculated values are there-
fore believed to provide an adequate representation of the spectral properties
of 002.

The quantities (Q&)STP and 1/d = |i(sl/2/d>2/(s_/—:i)] STP have

been tabulated for the 4.3-p fundamental band and the 2. 7-u overtone band
(see General Appendix). These bands are the only ones which contribute
appreciably to the total emission at moderate optical depths and high tempera-
tures, since the 1. 9-u and shorter wavelengths are weak.

Measured values for the CO, band strengths and the line widths are
tabulated in Tables 5-13 and 5-14, respectively. The 2. 7-u transition is a
combination band for which the lower state is not the ground state. Conse-
quently, the band strength is temperature dependent (see Section 2.3.3.2);
this dependence is shown in Figure 5-14. Theoretical values for the mean
absorption coefficient k and the line structure parameter 1 /d, are plotted
in Figures 5-15 through 5-21.
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TABLE 5-13. MEASURED CO, INTEGRATED BAND STRENGTHS
AT 300K (cm-2atm-! at STP)

2-u? 2. 74P 4.3-p 4.9-u° 15-p Footnote
1,57 d
1.61 e
1.88 £
66.4 2693 0.148 161 20 h-
91 2500 330 + 90 i
80 2640 161 j
2500 220 j
77. 8 2943 0.161% 1
0.38" n
240 o)
179 P
220 q
187 r
2970 =+ 60 240 + 5 s
172 t
255 u
240 v
240 w
220 + 10 x
246 y
240 + 20 z
1.6 67 2700 0.6 240 | Recommended Values

[ Footnotes on following pages]

190



a.
b.

C.

€.

f.

g.

i.

jo

n.

CHAPTER 5 — REPRESENTATIONS
FOR SPECIFIC MOLECULES

Includes 2vy + vy, Vi+ 2vp+ vy, and 4vy + Vs,
Includes 2v,+ vy and vy + V3.

Includes vy + vy, 3v, and two transitions from excited states: 01'0 -
20% and o1'o - 12%.

R. F. Calfee and W. S. Benedict, NBS Tech. Note 332, Washington,
D. C., 1966.

D. E. Burch, D, A. Gryvnak, and R. R. Patty, Absorption by CO,
Between 4500 and 5400 cm~?, Sci. Rept. No. U- 2955, Aeronutronic Div.
of Philco, Newport Beach, Ca11f., 1964.

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivi-
ties, Addison-Wesley, Reading, Mass., 1959,

00 - 1110 transition only.

D. F. Eggers, Jr. and B, L. Crawford, Jr., J. Chem, Phys., no. 19,
1951, p. 1554.

D. E. Burch, D. Gryvnak, E. B, Singleton, W. L. France, and D,
Williams, Infrared Absorption by Carbon Dioxide, Water Vapor and
Minor Atmospheric Constituents, AFCRL Res. Rept. AFCRL-62-698,
Air Force Cambridge Res. Lab., Bedford, Mass., 1962.

J. Fahrenfort, in Infrared Spectroscopy and Molecular Structure (M.
Davies, ed.), Elsevier, Amsterdam, 1963, p. 377 et sedq.

o1'o - 20%
o1lo - 12% transition only.
00% - 11%0

E. K. Plyler, E. D. Tidwell, and W. S. Benedict, J. Opt. Soc. Am.,
no. 52, 1962, p. 1017,

00% - 0310 transition only.

W. S. Benedict, Theoretical Studies of Infrared Spectra of Atmospheric

' Gases, Final Rept., AF19(604)-1001, Johns Hopkins Appl. Phys. Lab.,

Baltimore, Md., 1956.
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L. D. Kaplan and D. F. Eggers, Jr., J Chem. Phys., no. 25, 1956,
p. 876.

O. Fues, Z. Physik, no. 46, 1927, p. 519.

P. E. Martin and E.‘ F. Barker, Phys. Rev., no. 41, 1932, p. 291.
A. M. Thorndike, J. Chem. Phys., no. 15, 1947, p. 868.

B. Schurin, J. Chem. Phys., no. 33, 1960, p. 1878,

D. Weber, R. J. Holm, and S. S. Penner, J. Chem. Phys., no. 20,
1952, p. 1820.

R. P. Madden, J. Chem. Phys., no. 35, 1961, p. 2083.

J. Overend, M. J. Youngquist, E. C. Curtis, and B. Crawford Jr.,
J. Chem. Phys., no. 30, 1959, p. 532.

C. B. Ludwig, C. C. Ferriso, and L. Acton, J. Opt. Soc. Am., no. 56,
1966, p. 1685,

P, Varanasi and J. L. Lauer, J. Quant, Spectry. Radiative Transfer,
no, 6, 1966, p. 127,

M. Wolk, J. Quant. Spectry. Radiative Transfer, no. 7, 1967, p. 1.

C. N. Harward and R. R. Patty, J. Opt. Soc. Am., no. 58, 1968,
p. 188.
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TABLE 5-14. COLLISION-BROADENED LINE HALF-WIDTHS AT
HALF-HEIGHT FOR CO, AT STP (in cm™')

Broadener
CO, N, O, Hy A He Source
0.1 Ma.ddenal
<0.12 AdellO

0.079 Benedict, SilvermanC
0.088 | 0.06 'Kostkowskid

0.067 Kaplan, Eggers®
1.3x | x o.81x | 1.17x | 0.78% | 0.50x | Burch, et a1.©8
0.10 0.07 0.05510.08 6.~05 0.04 Recommended Values

a. R. P. Madden, J. Chem. Phys., no. 35, 1961, p. 2083.

b. A. Adel, Phys. Rev., no. 52, 1953, p. 53.

¢c. W. S. Benedict and S. Silverman, Phys. Rev., no. 94, 1954, p. 752

(A).
d. H. J. Kostowski, dissertation, The Johns Hopkins University, 1955,

€. L. D. Kaplan and D. F. Eggers, J. Chem. Phys., no. 25, 1956, p.
876.

f. D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D.
’ Williams, AFCRL-62-698, 1962.

e Only the ratios of the line width to the line width in pure N, were
measured. The quantity x refers to the undetermined Ny-broadened
line half-width.
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Figure 5-17. Values of the line density parameter 1/d, for the 4.3-u
band for C1202. (The dashed portions of the curves are extrapolated
values. These data are tabulated in the General Appendix. )
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Figure 5-18. Values of the line density parameter 1/d; for the 4.3-p
band of C!120,. (The dashed portions of the curves are extrapolated
values. These data are tabulated in the General Appendix. )
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Figure 5-19. k=8/d of C!20, versus wavenumber
for T =300, 600, 1200, and 1500K.
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5. 2. 2 WATER VAPOR (H,O)

The approximate theoretical methods for predicting spectral emis-
sivities of diatomic and linear polyatomic molecules are not directly applicable
to the H,O molecule. In general, a bent triatomic molecule, such as H,O,
possesses three different values of moment of inertia about its principal axes.
This simple fact causes great complexity in describing the energy level struc-
ture, transition frequencies, intensities, etc., for which simple explicit
expressions exist for symmetric top molecules.

Line-by-line calculations have been made for H,O at low temperatures
(~300K), but accurate extension of these calculations to higher temperatures
(several thousand degrees) would require far more knowledge of the structure
of the H,O molecule than is presently available. At the present time, no
reliable theoretical calculations are available for band model parameters for
H,O at high temperatures and the existing model data are derived entirely
from experiment.

During recent years, much data for experimental spectra of high
temperature water vapor in wavelength region between 1 and 22 microns have
been published. These spectra have been measured by different techniques
and cover the temperature range from 300 to 2700K (see Chapter 6, Figure
6-1). The optical depths range between about 0.2 and 800 atm-cm(STP) and
total pressures range between 0. 07 and 10 atm, but the range of parameters
covered at any one temperature is rather limited, especially at higher temper-
atures. These measurements show that the spectral emissivity depends on
the following independent variables: wavelength, temperature, partial pres-
sure, line broadening ability of the various species, and pathlength.

5.2.2.1 Curves of Growth and Absorption Coefficients

The curve of growth given by the statistical band model has generally
been used to evaluate the mean spectral absorption coefficients from nonthin
water spectra. The parameters presented in this handbook were deduced
from the experimental data using a curve of growth corresponding to an
exponential distribution of line intensities:

W) Kl
d(w)

-1n7(w) = = (5-16)
gw!u

1+ (o)
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where k(w) is the mean absorption coefficient (at STP), u the optical depth
(at STP), and a(w) a fine structure parameter equal to the local mean value
of the ratio of the collision half-width to the line spacing, +v/d.

The average absorption coefficients obtained by fitting equation (5-16)
to experimental data are shown in Figure 5-22. In general, the mean deviation
of the experimentally determined absorption coefficients from the plotted
curves is within +20 percent. In some portions of the spectra, where the
absorption coefficient changes rapidly, a much greater spread in the individual
absorption coefficients is observed. The large spread here is probably intro-
duced by small errors in the wavenumber calibration of the different meas-
uring instruments. '

502242 Water Vapor Line Widths

For water vapor the approximation of optical collision diameters which
vary as a power of the temperature leads to an expression for the line width
of the form

n,
AN (—2—7-‘"’-«)J + (yF o) oo P (ﬂ?’-)n* (5-17)
Yo T j Yi’a13 5T YH,0’273 TH,0 \'T - 0T

273
the line width per unit pressure at T = 273K (cm‘i/atm) due to collision with
this species (including the nonresonant self broadening collisions). Yo I8
2

the corresponding contribution of resonant collisions. For high temperature
gases, the available data do not warrant a sophisticated representation. Thus,
the data have been correlated based on the constant collision diameter tem-
perature exponents nj =0.5 and n*=1.0.1

Here Pj is the partial pressure (atm) of the jth broadener and (yj) is

Measured water vapor band strengths are presented in Table 5-15,
and values of half-widths for both self- and foreign-gas broadening are listed
in Table 5-16. Recommended values of the individual line half-widths

1. The calculations of Benedict and Kaplan [ 5-8, 5-9] indicate that a some-
what improved representation for H,0-N, collisions can be obtained with
nj = 0.6 to 0.7 instead of 0. 5.
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for different broadeners for use in equation (5-17) are included in Table
5-19. For example, for a binary mixture of water vapor and nitrogen,
equation (5-17) reduces to

v X = b {c [0.44 (Z2) + 0.09 (2—;-?3-)1/2} + (1-c) (3,1,7—5)1/20.09 }

(5-18)

where c is the water vapor mole fraction.
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TABLE 5-15. MEASURED WATER VAPOR INTEGRATED BAND
STRENGTHS AT 300K (cm~%atm~! at STP)

64 3-1t 2. 74 1. 87-4 1.38-p 1.14-p Source
. b
247 + 10% 226 = 21 24.2 17.8 Goldstein
317 24,17 Benedict, Calfee’
220 + 10% Goldman, Oppenheimd
300 + 20% Ludwig, Ferriso,
Abeytae
17.3% ,
338 = 6.7% Rosenberg, Pratt,
f
Bray
200 +15% | 26 7% 21.2+10% | 1.96 = 50% Ferriso, Ludwig®
180 (vq 21.2 17.9 Lowderh
only) :
235 Gates et al.i
0.4 Burch et a.l.J
220 + 20 19.8+4 2.7 Goldman et al. k
300 220 24 18 1 Recommended Values

a.  This band system includes the transitions vg, vy, and 2v,, if not
noted otherwise.

b. R. Goldstein, JQSRT, no. 4, 1964, p. 343.

c. W. S. Benedict and R. F. Calfee, ESSA Professional Paper 2, June
1967.

d. A. Goldman and U.P. Oppenheim, Appl. Optics, no. 5, 1966, p. 1073.

e. C.B. Ludwig, C.C. Ferriso, and C.N. Abeyta, JQSRT, no. 5, 1965,
p. 281.

£, C.W. Rosenberg, Jr., N.H. Pratt, and K.N.C. Bray, JQSRT, no.
10, 1970, p. 1155.
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g.
h.

i.

Je
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C. C. Ferriso and C. B. Ludwig, JCP, no, 41, 1964, p. 1668.
J.E. Lowder, JQSRT, no. 11, 1971, p. 153.

D. M. Gates, R, F. Calfee, D, W. Hansen, and W, S, Benedlct NBS
Monograph 71, 1964.

D. E. Burch, D. A. Gryvnak, and R. R. Patty, J. Opt. Soc. Am.,
no, 57, 1967, p. 885; Aeronutronic Report V-3704, July 31, 1966.

A. Goldman and U.P. Oppenh:eim, JOSA, no. 55, 1965, p. 794.
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TABLE 5-16. MEASURED VALUES OF COLLISION—BROADENED LINE
HALF-WIDTHS AT HALF HEIGHT FOR H,0 AT STP (in cm 1)

i. Broadener
H,0 Ny Oy CO, Ar ~ Source
0. 53 0.092 0.044 Benedict, Kaplan
5. 2X X Burch et al.
d
0.54 0. 087 0.12 0.065 Vasilevsky, Neporent
0.53 0.09 0.04 0.12 0.06 Recommended Values

Q. Values for foreign gas broadeners have been scaled to 273K according

Y,

to y ~T /2 For self broadening, vy ~T~' was used.

b. W. S. Benedict and L. D. Kaplan, J. Chem. Phys., no. 30, 1959,
p. 388.

C. D. E. Burch, D. Gryvnak, E. B. Singleton, W, L. France, and D.
Williams, Infrared Absorption by Carbon Dioxide, Water Vapor, and
Minor Atmospheric Constituents, AFCRL-62-698, July 1962.

d. K. P. Vasilevsky and B. S. Neporent, Opt. Spectry., no. 7, 1959,
p. 353.

5e2.2.3 Fine Structure Parameter (1/d)

In a simplified treatment, the line spacing, d(w) , may be averaged
over the vibration-rotation bands to yield a d for which the temperature
dependency may be represented by d(T) =exp (-0.00106 T + 1. 21) . A more
accurate wavenumber-dependent representation of d(w, T) is given in
Figure 5-23. The ordinate is chosen to be 1i/d(w, T) because the fine-
structure parameter a(w, T) has the form v/d, where vy is the mean HyO
line half-width as discussed in Section 5.2.2.2. The data given in Figure 5-23
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were obtained experimentally in the temperature range from 1200 to 2750K
over the spectral region in which water vapor absorbs significantly.

In all cases, the deduced values of 1/d increase toward the wings of
the bands and become indeterminate in the center of the troughs, and the
values of 1/d were extrapolated into the trough regions. Since the plots of
the experimentally determined values of 1/d versus temperatures were
smooth curves, over the observed range of 1200 to 2750K they were extrapo-
lated to 600 and to 3000K. '

The set of 1/d versus w for T = 600, 1000, 1500, 2000, 2500, and
3000K is shown in Figure 5-23, where all regions which were extrapolated

are given as dashed lines.

5.2.2.4  Detailed Line-by-Line Calculations for H,0

Precise monochromatic emissivity calculations for H,0 were made
over the spectral region 3895 to 3905 cm~! based on the tabulation of Gates
et al. [5-10]. These are compared with band model calculations using
parameters derived (for consistency) from the tabulated values of line
intensity and half-width,

Values of the monochromatic absorption coefficient were computed at
increments of 0,001 cm™!, assuming a Lorentz shape for all lines and con-
sidering the contributions of all lines within the 5 cm~! spectral interval as
well as all lines located within 5 cm™! of either end of the interval,

. :

The parameters Zsi/d and Z (s ) / /d were evaluated for
i i

each 5 cm~! interval, and the band model parameters k and a, were

determined as follows:

i%o.
1

k = Zsi/d ’ (5-19)
i

and

a, = [? (siyoi)l//d]z/ [;si/d} . o (5-20)
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Figure 5-23. Plot of (1/d) for H,O versus w between 1150 cm~! and
7500 cm~! for T = 600, 1000, 1500, 2000, 2500, and 3000K.

The values of f k dw/d and ZSi/ d over the intervals agreed to better than
i

three significant figures.

This would be expected unless a strong line
happened to be centered very near one end of the interval.
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Graphs of the monochromatic spectral emissivity are shown in Figure
5-24. Table 5-17 shows a comparison of the mean emissivity determined for
the spectrum (e = f € dw/d) with the mean emissivities predicted by two

different band models using the calculated parameters k and a;. These
comparisons show only the error in representing a particular calculated
spectrum by a band model and do not reflect any error in calculating the
properties of a real spectrum from tables of line intensities and half-widths.
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TABLE 5-17. COMPARISON OF CALCULATED EMISSIVITIES

3900 - 3905

3895 - 3900 3895 - 3905
(cm™1) (cm™1) (em™1)
Exact 0.0909 0. 0859 0. 0884
Random
Emissivity Exponential 0.0962 0. 0898 0.0931
Calculation Model (5.9% high) (4. 6% high) - (5.3% high)
Random
Exponential-S™ 0.0889 0. 0851 0.0874
Model (2.2% low) (0.9% 1ow) (1.1% 1ow)
2
Band Model k (cm?/gm) 367.4 - 554.9 461.2
Parameters a, (atm™) 0. 04414 0. 02466 0. 03234

$37NO3 10N D14103dS HO4
SNOILV.LN3SIHdIH — G HILdVHI
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5.3 SUMMARY OF TWO RECOMMENDED BAND MODELS

The two recommended models differ in the approximation used to
account for inhomogeneous effects. The reasoning used in constructing the
two approximations is presented in Section 4.2. In the single line group (SLG)
model all lines in a spectral interval are treated as though there are no large
differences in individual line strengths and the Curtis-Godson approximation
is applied as though the parameters represented a single line., More detail
is added in the multiple line group (MLG) model where the lines in the spec-
tral interval are divided into groups so that all the lines in « particular group
will have similar strengths. In this model the Curtis-Godson approximation
is applied to each line group in turn and the transmission is taken to be the
product of the transmissions for each of the line groups.

The curves of growth are the same for each line group with differences
in the line spacing to account for division into line groups. Both models are
based on random band models. The curve of growth used for the collision
broadening is exact for an exponential distribution of Lorentz lines (Section
3.2.2.2), but it is also a reasonable approximation for lines of equal strength
(Sections 3.2.2.1 and 3. 2. 5(a)). Doppler lines are modeled using an approxi-
mate expression for a random distribution of equal strength lines (Section '
3.2.3.1 and Table 2-B-1) . A functional relation has been selected for
combining collision and Doppler broadened optical depths which essentially
selects the larger of the two if they differ by a factor of 3 or more.

The spectral radiance is calculated along a line of sight through a gas
from the point on which the radiation is incident. If £ is the distance along
the path and L is the total pathlength, then

L
N = - f N (d7 (£,0)/dt) de . | (5-21)
0 4

The transmissivity is indicated as an average since the band model calculations
define radiation over some wavenumber interval (usually 25 cm~!) centered
about w. The functional dependency of transmissivity on £ includes not

only the physical length but also the gas properties (temperature, pressure,
and mole fraction) which are functions of £ . Transmissivity is defined as

T (L,w) = exp[-X (£,w)] , (5-22)
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where the optical depth X is the sum for all the (i) radiating species

X (L,w) = ), X (£,w,1) (5-22a)

Detailed procedures for evaluating optical depth vary depending upon
the radiating species and the band model (MLG or SLG) considered. Rec-
ommended procedures for gases are described in this section while those for
carbon particles (soot) are described in Section 5.4. In the following equa-
tions, notations for position, £, wavenumber, w , and species, i, will be
omitted except where required for clarity.

The equations used with the MLG .and SLG models are listed in Table
5-18 to show the similarities and differences in the two models. Some of the
paraméters used in the models are listed in Tables 5-18 and 5-19 while others
are tabulated in the General Appendix. '

" The values of the band model parameters for H,O were determined
experimentally [ 5-11] by fitting the ST,G model to experimental results from
a hydrogen/oxygen burner to determine values for k and 1/d. Values for
1/d, are determined from the experimental 1 /d values by inverting an
approximation previously recommended [ 5-121 for obtaining 1/d from 1 /dg .
Further theoretical studies [ 5-13] have indicated that the fn and g values

for H,O increase with the line group index, n, but no revised expressions
have been recommended.

The band model parameters for CO, and the diatomic molecules were
determined by fitting the models to theoretical calculations of Malkmus and
Thomson [ 5-2, 5-14]1. In the case of CO,, all values (k, 1/dy, and 1/d) are
tabulated, while for the diatomic molecules only k and 1/d are tabulated.
The value of 1/d, may be determined from the value for 1/d according to

i 1 2
i hh _pg/er
fn gn e
1 1 |n=0
i~ q - . (5-23)
Z ¢ -no/T
n=20 n
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However, because of the large values of 0, it is unlikely that the MLG model
would be required for diatomic molecules.

The method of temperature and pressure adjustments to the absorption
coefficient (k) and the optical thickness (u) which are shown in Table 5-18
correspond to the method of presentation of data in the General Appendix.
Values of absorption coefficient (k) are tabulated as functions of temperature
at standard temperature and pressure (STP). Therefore, the absorption
coefficient must be multiplied by an optical thickness (u) which has been
corrected to the equivalent thickness at STP using equation (5-33) (see Table
5-18). This is equivalent to the actual pathlength times the ratio of actual to
standard density.

The specification of the collision broadened half-width as a function of
pressure and temperature is more complex than the method used for the
absorption coefficient. The line width is expected to be proportional to the
number of collisions experienced by a molecule per unit time. Since self
broadening collisions are more effective than those with other species, it has
been found [ 5-15] that good agreement with experimental data at room tem-
perature has been obtained by assuming the line width is proportional to
(yapa + ybpb), where the subscripts a and b designate self broadening and

foreign gas broadening. In extending this proportionality to higher tempera-
tures it is necessary to take into account the effect of variation in temperature
dependency [ 5-16, 5-17] between resonating and nonresonating self-broadening
collisions described in Section 2.4.3. This results in the formulation of
equation (5-34) (see Table 5-18)

= Z}( ) (273/Tjni’j'l+ (v. .) (273/T)ni’i
Yei j Yi,j’ 273 Pj Yi,i’273 Pi .

In this expression, the self-broadening of the radiating species under consider-
ation is included in two ways. First it is included as one of the j foreign gas
broadeners to account for nonresonant collisions and, second, it is included
in the separate term (yi i) to account for resonant collisions which have a

’

different temperature dependency. The use of this formulation depends upon
the assumption that the line widths, which are functions of frequency, can be
approximated by a band averaged value so all frequency dependence in the
fine structure parameter (aC) will appear through the mean line density

(1/4d).
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Since the values listed for v in Table 5-19 are per unit pressure at
standard temperature rather than per unit length at standard density (as in the
case of k), the subscript 273 is used in preference to the STP used for the
absorption coefficients. The factors for temperature correction oi the half-
width, 'ni,, and 'ni i have been assumed to be 0.5 and 1.0 as shown in

Table 5-19. Although there is some evidence that other values may improve
the representation (see Sections 2.4.3 and 5.2.2. 2) , the values given in
Table 5-19 must be used to be consistent with the experimental data reduction
of the line density (1/d) for water vapor.
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TABLE 5-18, EQUATIONS FOR RECOMMENDED MLG AND SLG MODELS

Parameter

MLG Model

SLG Model

@
Optical Depth of all Line X= ) X Not Applicable (5-24)
Groups n=290
[ % [ -
Optical Depth X =N1-Y "% X X=nN1-Y "2 xx* (5-25)
) x \2]-2 2] -2 X‘z-z %\ 2]-2
Combined Collision and _ cn Dn _ _ ‘¢ D
Doppler Optical Depths R ‘(x; ) e <x;= ) 1 Y= ‘( x*) + 1-\x 1 (5-26)
Optical Depth for the u u
Weak Line Limit Xt = [ kdut x* = [ k(w,T)du' (5-27)
0 0
Optical Depth for a Y v
Pure Collision Curve X = Xx [1 + X*/4a ] 2 X = Xx [1_ + X*/4a :l 2 (5-28)
cn n n" ~cn ¢ ¢
of Growth
Optical Depth for a xk 2
Pure Doppler Curve X = 1,7a Injl+ - X = (5-29)
of Growth Dn D 1. 7aDn D
Collision Broadened uy uy
Fine Structure a = = [ =Sk an a = — J = k(w, T)du’ (5-30)
- cn Xk d c X d ’
Parameter n 0 n 0
Doppler Broadened u 7y u vy
i = L ) ' - L D '
Fine Structure 8 = %= f 3 kndu an = %= f ] k{w, T )du (5-31)
Parameter n 0 n 0

S$3TNO3TON I14103dS HOA
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TABLE 5-18. (Continued)

Parameter MLG Model SLG Model
Absorption Coefficient o fnexp(-en/'l‘)
for the nth Line Group kn = k(w,T) Not Applicable (5-32)
. E f exp(-6n/T)
n
n=0
f
oK)
H,0 1 2300
Co, 1 960
CcO n+l 3123

NO ml 2740
CN nt+l 2970
OH nt+l 5350
HCl n+l 4170
HF n+l 5950

Line Density (cm)

‘l/dn = gn/dO
Species _g_g l/d()
H,0 1 See Note Below
co, (1+en)? 1/dy and ¢ are

tabulated as a
function of w and
T in the General
Appendix

Diatomics 1 equation (5-23)

For H,0
14, = 1/d [1-exp(-6/2T)]

[1+exp(-6/2T)]

where 1/d is determined as in the
SLG model

For H,O

1/d is tabulated as a functionof w and T, in the
General Appendix, but an approximate mathematical
expression is

1/d = expl 0.7941 sin(0.0036w - 8.043) +D(T)

-2.294 + 0,3004 X 10T - 0,366 x 107°T2]

For CO, and Diatomic Species

1/d is tabulated as a function of w and T in the
General Appendix

$31NJ3 1O J14103dS HOdJ

VHO
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TABLE 5-18. (Concluded)

Parameter

Both ML.G and SLG Models

Band Averaged Absorption
Coefficient (cm=!)
For the ith Species

The coefficient k for standard density is tabulated as a function of wavenumber and temperature in
the General Appendix

Optical Thickness for the

ith Species ( cmSTP)

u =R (273/T )2 where b, is the partial pressure of the ith species in atm, (5-33)
and £ is the physical pathiength in em

Collision Half-Width
(cm™!) for the ith
Species. Broadening
Species Denoted by j.
Partial Pressures pi

And pj, are in

Atmospheres.,

= ‘E( Yoo (213/1) | 4 () p (arayr) (5-34)
Vci j 71,5273 B Yi,i’273 B

See Table 5-19 for recommended values

Doppler Half-Width
(cm™)

— . '
Yp = (5.94 10-%) —9-17' (T/273) % where m = molecular wt of the ith species (5-85)
i m, 2

1

S3TNJ3TOW D14103dS HO4
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TABLE 5-19. MODEL VALUES FOR THE COLLISION
LINE WIDTH PARAMETERS

Mot?)cule Bro?flfner 0y Pors | My |- O idess | i
! ] cm™latm™! cm~latm™
H,0 H,0 (0.09) 0.5 . 0.44 1.0
N, 0.09 0.5
0, 0. 04 0.5
H, ~ (0.05) 0.5
CcO (0.10) 0.5
CO, CO, 0.09 0.5 0.01 1.0
H,0 (0.07) 0.5
N2 Oo 07 Oo 5
0, 0.055 0.5
Hz Oo 08 00 5
CcO (0.06) 0.5
CcO CO 0.06 0.5 0.0 1.0
H,0 (0.06) 0.5
CO, (0.07) 0.5
H, 0.06 0.5
N, 0.06 0.5
o, 0.05 0.5
NO NO 0.05 0.5 0.0 1.0
N, (0.05) 0.5
0, , (0.04) 0.5
Other (0.05) 0.5
CN CN (0.05) 0.5 0.0 1.0
Other (0.05). | 0.5
OH OH (0.05) 0.5 0.45 1.0
Other (0.05) | 0.5
HCIL HCl (0.05) 0.5 0.15 1.0
Other (0.05) 0.5
HF HF (0.05) 0.5 0.45 1.0
Other (0.05) 0.5

NOTE: Values in parenthesis are estimated.
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5.4 ' CALCULATION PROCEDURE FOR CARBON PARTICLES

Although calculation of scattering phenomena normally associated with
particle radiation is not completely treated in this handbook, a method devel-
oped [ 5-18] for predicting the radiation from soot particles in rocket exhaust
plumes will be described. The theoretical calculations used in the develop~
ment assumed the particles to be small in comparison with the wavelength
range of interest (A >1.0p) and the experimental measurements indicated
the mean particle size was probably less than 0.4n. As pointed out by Hottel
[ 5-19], this particle size range is much less than particle sizes resulting
from furnaces using powdered-coal or heavy residual oils, so the method to
be presented should be applied only when the particle size range is applicable.

When the particle size is small, the monochromatic absorption coeffi-
cient is independent of the particle size, and may be expressed as [ 5-20]

k = 36 mpF (1)/pgA

where p is the particle mass density (gm/cm? of cloud), p, is the bulk
carbon density, and A is the wavelength. The function F()A) is related to
the complex index of refraction, This was evaluated [ 5-18] using previous
results of Stull and Plass [ 5-21], and the results of these calculations are
presented in Figure 5-25,

Experimental measurements were made by Boynton et al. [ 5-18] near
the exit of small rocket motors in an experiment similar to that used by
Ferriso and Ludwig [ 5~15] to measure emissivities of hot H,O and CO,.
Temperature was varied by changing the nozzle area ratio, and both tempera-
ture and particle mass density were varied by changing the mixture ratio of
the rocket propellants (RP-1 and gaseous oxygen).

The experimental results generally agreed with the theoretical pre-
dictions with two exceptions. At low temperature (1045K) and short wave-
length (A < 2u) there was evidence that scattered radiation from the rocket
chamber was significant. In addition, at temperatures above 1700K, theoreti-
cal predictions of the spectral dependency of k were incorrect. In this
temperature range, k becomes almost independent of wavelength but is
strongly dependent on temperature. It is postulated that this difference
between theoretical and experimental results could be caused by the high
temperature properties of rocket motor soot being quite different from those
of the bulk material used in the calculations.
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Figure 5-25. Linear absorption coefficient for clouds
of very small carbon particles.

The observed and theoretical values of k are presented in Figure 5-26
showing the sharp change in trends at 1700K. The cross plot presented in
Figure 5-27 is consistent with the experimental data as shown by the compar-
ison in Figure 5-28. These data are recommended for radiant heat transfer
calculations and are tabulated in the General Appendix.

The absorption coefficient developed for carbon particles should be
treated as a linear absorption coefficient for a gas so that the optical depth is

X = kc(w,T)l_lC (5-36)

where k_ is the absorption coefficient (cm?/gm). The pathlength (uC) is

the product of the cloud density (p - gm/ cm?3) and the physical pathlength
(£ - cm). This optical depth (X) ‘is combined with those of other species
as described by equation (5-22a).
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In using the carbon particle data it should be noted that extrapolation
of the results beyond 4u will probably be necessary to achieve reasonable
heat transfer results. Unfortunately strong molecular radiation bands mask
the carbon continuum radiation beyond 4u, so it was not possible to obtain

experimental results,
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OBSERVED
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Figure 5-26. Comparison of theoretical and experimental values

for the carbon particle absorption coefficient.
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A

Figure 5-27, Results of the experimental determination of the carbon
absorption coefficients. (This is a cross plot of Figure 5-26. )
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Figure 5-28. Comparison of experimental data with the set of absorption
coefficients given in Figure 5-27 and tabulated in the

General Appendix.
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APPENDIX 5-A
CALCULATION OF DIATOMIC SPECTRA — THEORY
Because of the very limited calculational effort required to compute
local line strengths and spacings for diatomic molecules, it may be more
convenient to compute such band model parameters as needed within a pro-
gram, rather than to store them in some tabular form and interpolate to the

required wavenumber and temperature,

With such a use in view, the expressions for line strength and line
spacing are presented here in equations (5-A-4) and (5-A-6), respectively.

The energy levels of an anharmonic oscillator, in the first approxima-
tion to the vibration-rotation interaction, are given by equation (2—45):

he

M- = w (v+-1--> w X <v+l->2 + W (V+l)3 + w z (v+-1—~>4
e 2 e e 2 eye 2 e e 2

# B+ 1) - a (v+3)ili+1) :

The frequency of a transition for |Av] =1 is then given by

w = [E(v+1,j') - E(v,j)] /he
= @, + B 1) - (i +1)]
-« v+§- it('+1) - v+l» j(j+1) (5-A-1)
o 5 )3'( pyAS ’
where
w o= c,oe-z(v+1)wexe +—[3(v+1)2+i]weye+[4(v+1)3+ (v+1)]cueze .

In terms of m tm = j+1 for the R-branch, m = -j for the P-branch),

230



CHAPTER 5 — REPRESENTATIONS
FOR SPECIFIC MOLECULES

w(m) = wV+2Bem-ae\:m(m+1) + 2<vv+;712’*)m]. . (5-A-2)

This equation expresses w as a quadratic function of m. On solving for m,
this becomes

B -« (v+1) =+ «/;B - (V+1)]2'— a (w-wv)
m(w) = e e e e .

(0
e

(5-A-3)

For the anharmonic vibrating rotator model, the average line strength

T
S“:ﬂ( )(w) at frequency w fora |Av] = 1 transition is given in terms of

the total band absorption a:ﬂ by [ 5-21:

v+1 [ 2
v+1(+) % BehC Be—ae(v+1) i J[Be—oze(v+1)] ~ oze(w _ wV)
SV ((.O) - v+1 @
@ KT ' “e
v
- he [Be - oze(v+1)]
X exp kozzeT ’.z[Be—oze(V+1)] [Be—oze(v+1)

1

T \/[TSe—oze(vﬂ)]Z—ozé(w—wv)]— 1+—B—-—2-—e—— ae(w—wv)

e—oze(v+1).

e

x [1 - exp <:t?r°’ )} , (5-A-4)
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where the upper sign refers to the main portion of the band and the lower sign

— v+l
to the returning R-branch. The quantity w;’ is approximated by [ 5-2]:

hecw

—Vv+1 v
= - - . . -A-
W, w, 1 - exp ( T > (5-A-5)

The average line spacing at frequency w is given by:

|dw/dm| = |dm/dw]!

a (@) = ZJ[Be-ae(V+1)]2 - a (0-w ) ) (5-A-6)

1
The total band strength at any temperature, oz:;+ (T), can be approxi-

mated from an experimental value of the strength at a reference temperature
Ty, A convenient approximation is given by [ 5-2]

v+1 - v+l
a " (T) wj(T o " 7(T) { he [ 1 1
= exp<s|E(v) - E(0,0 -l - = s
oz:l-l(To) a%(To)az-i—l(To) ’ [ “ ( )] 5 (To T>}

(5-A-17)

+
where oz: ! is given in STP units.

If data are not available for higher-order bands, the harmonic oscil-
lator approximation yields the result

oz:/z'+1(T) - o
oVl vl % {‘ (B - E)] I{TP‘} . (5-A-8)
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APPENDIX 5-B
MOLECULAR CONSTANTS
Molecular constants for the gases considered in Chapter 5 are included
in this appendix to facilitate computations. The constants for diatomic mole-

cules are presented in Table 5-B-1 and those for water vapor and carbon
.monoxide are shown in Table 5-B-2.
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TABLE 5-B-1. MOLECULAR(X»@TANTSFORIHATOMK:MOLECULES(EQUHJBRHM&VALUEﬂa

w w X wy w Z B o D B
e e e e e e e e e e e

Molecule | (cm~!) | (em™)| (cm™!) (cm™) | (ecm~!) | (em™!) (cm™1) (cm™1)
ci2pté 2170.21 | 13.461 | 0.0308 1.93139 | 0.017485 | 6.43 x 1075 | 4, x 108

1903. 68 ’

2
N4oté ( H3/2) 13.97 | -0.00120 1.70426 | 0.0178 5. X 10~8

1904. 03

(*11; /5)
olég! 3735.21 82, 81 18.871 | 0.714 18.8x 1074 0.3 x 1074
clant4 2068.705]| 13.144 1.8996 | 0.01735
HlCI3 2989, 74 52.05 | 0.056 10.5909 | 0.3019 0. 000532 -4, x 1078
Hlc137 2987.47 | 51.97 | 0.056 10.5748 | 0.3012 0. 000530 -4, x 1078
HIFt? 4137.253 | 88.726 | 0.5334 0.0211 | 20.9456 | 0.7888 0.002131 -0.000038

a. G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules,
D. Van Nostrand Company, Inc., Princeton, N.J., 1950,
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TABLE 5-B-2. MOLECULAR CONSTANTS FOR CO, AND H,0
MOLECULES (EQUILIBRIUM VALUES)

Molecule Molecule
Constant | ct20$?® | H10%® | constant | ct?of® miots P
w 1354. 91 3285.3 | g 0.775
W, 673. 00 1653. 9
ws 2396.49 3935.6 Ae 27.33
.391 .
o a1 .89 | Be 0.391635 | 14,575
Xo9 - 0.63 - 19.5 Ce 9.499
X33 - 12- 63 - 46. 37
o 0.00120
X19 3.65 - 20,02 09 -0.00072
X13 - 19.37 -155.06 | asy 0. 0030875
Xy3 - 12.53 - 19.81
A
a 0.495
Vi1 0.13 §3
Vo920 0.01 ayq 0.224
. C
Y833 0.015 ay 0.145
Vii2 - 0.08 A
Yioo - 0.07 Qo -2.659
. B
Yiss 0.015 @) 0,202
C
Yiig = Yoo3 0 Qo 0.105
Y233 0.01
Yizs 0.0 s 1.234
B
ok 0.112
C
as 0.169

2.

b.

C. P. Courtoy, Can. J. Phys., no., 35, 1957, p. 608.

G. Herzberg, Infrared and Raman Spectra, D. Van Nostrand Co., Inc.,
Princeton, N.J., 1945, p. 488.
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52,

5-9.

5_10.

5-11.

5-120

5~13.

5-14,
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CHAPTER 6

COMPUTED RADIATION DATA

This chapter contains a range of computed radiation characteristics
which may be used for calculations as well as familiarization with the spectral
characteristics of gaseous radiation. The data are arranged in four sections:
spectral characteristics of gaseous radiators, band absorptances for diatomic

gases, total emissivities and band absorptances for carbon dioxide, and total
emissivities for water vapor.
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6.1 SPECTRAL CHARACTERISTICS OF GASEOUS RADIATORS

In this section, some typical spectra calculated using the SLG model
will be presented for water vapor, carbon dioxide, carbon monoxide, and
carbon particles. These examples will illustrate the characteristics of the
particular gas as well as the relative effects of pressure, pathlength, and
temperature on the spectra. For each gas, the absorptivity (1 - Tw) is

presented over a range of piﬂ from 1 to 1000 cm-atm. In each illustration

a portion of the blackbody curves is presented to illustrate’which portions of
the spectra will be enhanced by the distribution of the blackbody radiance.

6.1.1 WATER VAPOR

The spectra presented in Figures 6-1a and b clearly illustrate the
wide spectral region over which radiation from water vapor may be important.
The relative strength of the spectra with increasing temperature, which is
apparent in the illustration, is a result of many factors. First, the optical
path, u, decreases because of the decreasing density, but this is offset
in some spectral regions by an increase in absorption coefficient. The fine

structure parameters a c and aD both tend to increase with increasing

temperature, with aD increasing more rapidly. The combination of these

temperature trends appears to have relatively minor effects in the band
centers compared with the effects in the wings. In the wings of the bands
there is a significant increase in absorption with increasing temperature.

An important point to note in the water vapor spectra is the strong
absorption at long wavelengths (small values of wavenumber). For example,
with the conditions shown for 1200K and 200 cm in Figure 6-1a the 4- to
10-pm region (1000 to 2500 cm”™ 1) will produce 51 percent of the total radia-
tion for the spectral region shown. This compares with 35 percent for black-

‘body radiation in the 4- to 10-um region at the same temperature.

A comparison of the effects of the pressure and pathlength in Figures
6-1a and b shows the variation which is expected when collision broadening
predominates. The absorption at low and moderate temperatures is more

sensitive to pressure than pathlength. For example the absorption at pTi =

2000 atm cm is much greater for pT = 10 atm in Figure 6-1a than for
£=2000.
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Figure 6-1a. Water vapor spectra — effect of pathlength.
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Figure 6-1b. Water vapor spectra — effect of pressure.
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This behavior illustrates the effect of the curve of growth on the optical
depth. In the square root limit (X =~4yku/d) for conditions of constant
temperature and mole fraction, Xe P (2) 1/2 g0 there is a greater increase
in optical depth with increasing pressure than with an increase in £. This
behavior is illustrated in Figure 3-8. The effect is not as pronounced at the
highest temperature in Figure 6-1 because of a combination of two factors.
First, the line density, 1/d, increases significantly at higher temperatures
while the optical, u, decreases, so the optical depth moves toward the
linear limit (X =_kwu) where the optical depth is proportional to u with no

differentiation between pressure and pathlength effects. Second, the increase
in temperature causes a decrease in the collision-broadened line width while
increasing the Doppler line width so the importance of Doppler broadening,
which is not a function of pressure, increases.

6.1.2 CARBON DIOXIDE

‘In contrast to the wide spectral range of water vapor, the carbon
dioxide spectrum is confined to several narrow bands. The bands of primary
interest from a heat transfer standpoint are the two shown in Figures 6-2a and
b. The predominant feature of the CO, spectrum is the band at 2300 em”™ . It
is opaque at very short pathlengths at high pressure, and even at low pressure,
the absorption is high. The same relative effects for pressure and pathlength
noted for water vapor are also true for carbon dioxide, but the absorption is
so high for the examples chosen that the effects are somewhat masked.

A more detailed illustration of the band structure in both the 4.2-pu
band and the 2.7-p band are presented in Figures 6-3 through 6-10. These
figures illustrate the effects of the rapid increase of line density with temper-
ature. For temperatures above 1500K, the line density is so great that the
Doppler component of the lines is sufficient by itself to smear out the spectral
structure effectively.

There is another carbon dioxide band at 670 cm” ! which has not been
included in Figure 6-2, but it may need to be considered in problems involving
low temperatures.

6.1.3 CARBON MONOXIDE

The carbon monoxide spectra calculated using the SLG model
described in Section 5.3 are illustrated in Figures 6-11a and b. They show
single bands near 2100 em” !, but since carbon monoxide occurs with carbon
dioxide in most applications, the carbon monoxide band is usually strongly
overlapped by the carbon dioxide band.
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Figure 6-2a. Carbon dioxide spectra — effect of pathlength.
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Figure 6-2b. Carbon dioxide spectra — effect of pressure.
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Figure 6-3. CO, 4.3-u band emissivity versus wavenumber for pure
Doppler line shape and weak line approximation for T = 300K.
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Figure 6-5. CO, 4.3-u band emissivity versus wavenumber for pure
Doppler line shape and weak line approximation for T = 1200K.
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 Figure 6-6. CO, 4.3-p band emissivity versus wavenumber for pure
Doppler line shape and weak line approximation for T = 1500K.
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Figure 6-7. CO, 2.7-u band emissivity versus wavenumber for pure
Doppler line shape and weak line approximation for T = 300K.
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Figure 6-9. CO, 2.7-u band emissivity versus wavenumber for pure
Doppler line shape and weak line approximation for T = 1200K.

252



EMISSIVITY

CHAPTER 6 — COMPUTED RADIATION DATA

1-0 - —. L R i endh e -
L CO, 1500K
-
0.1
-
0.0t
0.001 —
- =cnem e = WEAK LINE APPROXIMATION
n PURE DOPPLER LINE SHAPE
0.0001 [—
L
0.00001 ] ] | } [ ]
3100 3200 3300 3400 3500 3600 3700 - 3800

WAVENUMBER (cm™ 1)

Figure 6-10. CO, 2.7-p band emissivity versus wavenumber for pure
Doppler line shape and weak line apprximation for T = 1500K.
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Figure 6-11a. Carbon monoxide spectra — effect of pathlength.
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Figure 6-11b.

Carbon monoxide spectra — effect of pressure.
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6.1.4 CARBON PARTICLES

Since carbon particles are solid, they radiate in a continuum, and
pressure effects are negligible. Spectral absorptivity calculated using the
procedure described in Section 5.4 for finely divided soot is shown in Figure
6-12. The significant spectral characteristic is the continuous decrease in
the absorption coefficient at short wavenumbers.
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Figure 6-12. Absorptivity of finely divided soot particles.

257



CHAPTER 6 — COMPUTED RADIATION DATA

6.2 INTEGRATED ABSORPTANCES FOR DIATOMIC GASES
Because of the narrow spectral width of the bands of diatomic gases,

the integrated absorptance is often used in computing heat transfer. The
integrated absorptance is defined as

f e(w, T) dw = f 1 - 7 (w, T)] dw . : (6-1)
0 0

The radiance can be written in the approximate form

[es]
W(r) = W "(wo, T) [ e(w, T) dw (6-2)
0
where Wwo (wg, T) is evaluated at the band center (w = w,) .
Integrated absorptances of several diatomic gases are presented in
Figures 6-13 through 6-30 as functions of total pressure, temperature, and

pathlength. The order of presentation is tabulated below:

Figure Number for Pressure Indicated

gﬁ 0.01 atm 0.1 atm 1.0 atm
CcO 6-13 6-14 6-15
NO 6-16 6-17 6-18
CN 6-19 6-20 6-21
OH 6-22 6-23 6-24
HC1 6-25 6-26 6-27
HF 6-28 6-29 6-30

258



CHAPTER 6 — COMPUTED RADIATION DATA

= co
- cC=0
B Py = 0.01
10%2 |~
3
= ot
3 0
© -
< B
1800
i 1309
3588
8
100 |—
101 ] | | | { |
0.1 1 10 100 1000 10 000
u (cm)s-rp

Figure 6-13. Integrated absorptance for the fundamental band of CO
at 0.01 atm pressure.
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Figure 6-16. Integrated absorptance for the fundamental band of NO
at 0.01 atm pressure.
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Figure 6-17. Integrated absorptance for the fundamental band of NO
at 0.1 atm pressure.
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Figure 6-18. Integrated absorptance for the fundamental band of NO
at 1.0 atm pressure.
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Figure 6-19. Integrated absorptance for the fundamental band of CN
at 0.01 atm pressure. '
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Figure 6-20. Integrated absorptance for the fundamental band of CN
at 0.1 atm pressure.
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Figure 6-21. Integrated absorptance for the fundamental band of CN
at 1.0 atm pressure.
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Figure 6-24. Integrated absorptance for the fundamental band of OH
at 1.0 atm pressure.
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Figure 6-25. Integrated absorptance for the fundamental band of HC1
at 0.01 atm pressure.
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Figure 6-26. Integrated absorptance for the fundamental band of HC1
at 0.1 atm pressure.
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Figure 6-27. Integrated absorptance for the fundamental band of HC1
at 1.0 atm pressure. .
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Figure 6-28. Integrated absorptance for the fundamental band of HF
at 0.01 atm pressure.
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Figure 6-29. Integrated absorptance for the fundamental band of HF
at 0.1 atm pressure.
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Figure 6-30. Integrated absorptance for the fundamental band of HF
at 1.0 atm pressure.
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6.3 - INTEGRATED ABSORPTANCE FOR CARBON DIOXIDE

Because of the narrow spectrai width of the CO, band systems, this
molecule may be treated like the diatomic molecules, for which integrated
band absorptances were presented.

Figures 6-31 and 6-32 show the integrated absorptances for the 4.3-
and 2.7-pm bands of CO, in the weak-line and Doppler-line limits, which
provide upper and lower limits, respectively. These figures clearly show the
severe restriction placed on the possible range of integrated absorptance by
increasing temperatures. For all practical purposes, the weak-line limit
may be used for temperatures of 1800K and above for any total pressure.

Data for integrated emissivity versus pathlength are found in Table A2-26
in the General Appendix.
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6.4 TOTAL EMISSIVITY FOR WATER VAPOR

A considerable body of total emissivity data was assembled in the 1920's
and 1930's. These data showed that the total emissivity depends upon tempera-
ture, composition, pressure, and optical pathlength. Hottel and his coworkers
reduced and correlated their own and other people's measurements over many
years; these studies culminated in the preparation of two charts [6-1] which
can be used to obtain the total emissivity at a variety of conditions.

Hottel's charts are based upon a careful evaluation and correlation of
experimental measurements. Total emissivities derived from these charts
are entirely staisfactory for engineering predictions of heat transfer from
homogeneous volumes of hot water vapor at conditions near those of the meas..
urements. However, the charts also show estimates of the total emissivities
based on extrapolation of the data to other conditions — primarily, long paths,
high temperatures, and pressures other than atmospheric — and in these
situations the values derived from the charts are less accurate. Soéme current
applications, such as radiative heat transfer from rocket combustion gases,
involve hot water vapor at conditions where the chart values are extrapolated
over a considerable distance from the measured data. Based on the absorption
coefficients and fine structure parameters presented in the General Appendix,
the total emissivity (defined in Section 3.1. 5) has been calculated at optical
depths from 0.1 to 1000 cm-atm and at temperatures from 600 to 3000K. The
results were presented in Reference 6-2 and are summarized here.

The charts are similar in concept to Hottel's, showing the total emis-
sivity of hot water vapor at various conditions. In preparing these charts, an
attempt was made to keep the number of independent variables as small as
possible, as Hottel did in his presentation. However, the wide temperature
range covered affects the pressure/composition dependence to a degree which
should not be ignored. Like Hottel, the total emissivity is shown as a function
of temperature for various optical paths p{ for an infinitely dilute mixture of
water vapor and other gases at a total pressure PT = 1 atm; a second chart

is to be used to convert emissivities read from the first chart to other pres-
sures and compositions.

The emissivity of hot water at p= 0, and PT = 1 atm is shown in
Figure 6-33. In preparing this chart, it was assumed that 'yj = 0.09. Emis-

sivities read from this chart are thus correct if N, is the principal foreign
gas. Inspection of the data shown in Table 5-19 indicates that for most prac-
tical applications, in which air or N, are the predominant foreign gases, the
values should be reasonably accurate.
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The correction chart, giving the quantity CW by which e(p= 0,
P = 1) is multiplied to obtain €(p, PT) , is presented as Figure 6-34. This

chart is more complicated than Hottel's, since the temperature dependence of
CW has been retained. This temperature dependence is evident in the inter-

mediate plots of Hottel and Egbert [6-1] but was omitted in their final chart
in order to simplify the presentation. Since this work covers a smaller tem-—
perature range (the data considered were taken between 400 and 1000K), this
omission was reasonable. In the present results, the temperature dependence
is significant. The plotted curves are CW at various pathlengths p{ and

temperatures as a function of pressure and water content, which according to
the model for y and the 'yj and yj* values of Table 5-19 can be expressed in
combined form as P [1+ 5XH20( 273/T)1/2] where XHZO is the mole fraction
of water vapor. The chart shows that the correction factor, which shows the
effect of fine structure, is most variable at low temperatures and least variable
at high temperatures. At high temperatures there are many more lines in the
spectrum of hot water vapor than at low temperatures, so the fine structure

is effectively crowded out or filled up. The upper limit of the total emissivities
is given by the ""high pressure limit'' which is expressed using the linear limit
of the optical depth as '

eT' = f {1 - expl-k(w)ul} Wi w, T)dwo Tt .
0

The results are given in Figure 6-35. The upper-limit calculations are poten-
tially subject to error because of the effects of great broadening of strong lines
near the band center. These lines then contribute more strongly to emission
in the band wings than do the wing lines themselves, and so the spectral con-
tour of the band changes such that the true upper-limit total emissivity
becomes larger than the calculated values. We have estimated that this effect
contributes, at the very most, 20 percent to the emission in that valley between
bands to which the total emissivity is most sensitive. The analysis is some-
what similar to that of Penner [6-3]. The absorption coefficient in the wings
at this pressure is assumed to be made up of wing line contributions and those
of lines centered near the band center. The resulting expression for the
limiting pressure (in atm) is
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P = wsz(T/.‘SOO/Z [ozi/(ww ; “’c,i)2] , (6-3)
1

where kw is the mean absorption coefficient at a wavenumber W at the
bottom of a valley between bands, T is the temperature in K, and a, the

integrated intensity of the ith band centered at the wavenumber wc,i
Equation (6-3) can be evaluated numerically by use of the absorption
coefficients given in the General Appendix. One considers that the valley
region which has the greatest effect upon the total emissivity will be that
lying nearest the spectral blackbody emission peak (that is, at temperatures
between 1000 and 1500K, the valley between the 6.3- and 2.7-p bands, and at
temperatures between 1500 and 2000K, the valley between the 2.7- and 1.84-u
bands). One chooses kw and wW accordingly to obtain the values of the

pressure at which the absorption coefficients are 20 percent in error in these
valley regions. The results are tabulated in Table 6-1. The authors have not
directly evaluated the effect of an error of this magnitude in k upon the total
emissivity, since the effect depends upon both temperature and optical depth.
However, one can say that the effect will always be less than 20 percent and
much less at optical depths low enough that the wings contribute little to the
total emission.

TABLE 6-1. VALUES OF PRES- Our limiting pressure estimate
SURE ABOVE WHICH THE assumes that H,O is the principal
CALCULATED "UPPER LIMIT" broadening agent. Since H,O is a

EMISSIVITIES MAY NOT BE more effective broadener of H,O lines
TRUE UPPER LIMITS than other gases, systems dilute in

H,0 will follow our upper-limit esti-

mate to higher pressures better than
Temperature Pressure will pure water. The reader should
(K) (atm) note that the pressures required to
invalidate the upper-limit prediction
1000 60 are considerably higher at high
1500 180 temperature. This effect is primarily
2000 400 a consequence of the increase in Ew

caused by the overlapping of the band
wings, which is apparent in all our experimental spectra above 1000K.
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6.5 TOTAL EMISSIVITY FOR MIXTURES OF GASES

The total emissivity of a mixture of gases can be obtained by adding
the total emissivities of the different species present, if the different vibration-
rotation bands do not overlap significantly. One of the more common gas
mixtures involves H,O and CO,. These two species overlap significantly in
the 2.7-u region, with the result that the total emissivity is less than the sum
of the total emissivities of the two species calculated sepa‘rately. Hottel [6-4]
has given charts which give the amount by which the sum of €T of CO, and

H,O has to be reduced (‘each evaluated as if the other gas were transparent)

to obtain €T of the mixture. The charts are plotted up to a temperature of

1200K. For gas mixtures higher than 1200K, calculations may be performed
according to ' '

€ = — f(i—?ﬁ—z)wwo(w, 7) dw

T o T4
w

where 747, represents an appropriate band model value of the transmissivity
of the gas mixture (see Chapter 5).
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CHAPTER 7

ACCURACY OF CALCULATIONAL MODELS

The ultimate test of the reasonableness of any model lies in the accuracy
with which it predicts experimental measurements. This section is a survey
of existing experimental data and comparisons of these with calculations using
the band model parameters presented in Chapter 5.

During the last 20 years, experimental data have been obtained by
several laboratories using many different experimental procedures. Numerous
comparisons for diatomic molecules, water vapor, and carbon dioxide are
presented here, both for homogeneous as well as nonhomogeneous optical
paths. The experimental conditions were selected to be as wide and as rep-
resentative as possible. As an example, the ranges of temperature.and optical
depth for which experimental data on water vapor are currently available are
indicated on Figure 7-1. The accuracy and range of the experimental data
available for the comparison with calculations presented in this chapter are
insufficient in general to discriminate between the band models discussed in
Chapter 3 on the basis of goodness of fit.
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7.1 EXPERIMENTAL PROCEDURES
7.1.1 EQUIPMENT FOR HIGH-TEMPERATURE GAS SPECTROSCOPY

Quantitative spectroscopy requires the hot gas sample to be of uniform
temperature, concentration, and total pressure. The following methods have
been used: heated cell, subsonic burner, supersonic burner, and shock tube.
All methods have particular advantages and disadvantages. Cell measurements
are generally restricted to temperatures <1500K, but the thermodynamic
parameters can be chosen freely. Hot gases created in both sub- and
supersonic burners can be at temperatures as high as 3000K, but the mole
fractions and the total pressure cannot be freely chosen because they are
functions of the temperatures. The same is true to some degree for shock
tubes, with the additional disadvantage of obtaining a limited amount of spectral
data per test run.

The problem of thermal or concentration gradients at the interface of
hot gas and the ambient atmosphere is common to all experimental methods.
The problem is minimized in the case of large optical pathlengths. For
heated cells, in which the windows are replaced by a flowing hot inert gas
stream, the thermal gradient is replaced by a concentration gradient in the
mixing zone.

Another problem is atmospheric absorption. In closed systems, the
atmosphere is usually replaced by nitrogen gas. However, in the case of
burner measurements, a certain amount of unflushed atmosphere exists
between the hot gas and the flushed system.

A typical example of a heated cell is the arrangement of Goldman and
Oppenheim [7-1] which is shown in Figure 7-2. The absorption cell is
located in the center of a furnace which is much longer than the cell in order
to avoid temperature gradients at the windows. The source and transfer
optics as well as the spectrometer are all enclosed, evacuated, and then
flushed with dry nitrogen to eliminate atmospheric absorption.

To overcome the limitation of a fixed cell length, Herget et al. [7-21]
have used the arrangement shown in Figure 7-3, in which the light beam is
passed four times through the cell. Thus, by using single, double, and quad-
ruple passes, the determination of the curve of growth becomes possible.
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Figure 7-2. Schematic diagram of the enclosed optical
system as used by Goldman and Oppenheim [7-1].

Burch et al. [7-3] have used the arrangement shown in Figure 7-4 to
study the effect of the absorption by a cold atmosphere. Radiation from the
light source is focused near the center of a sample cell which is located in the
furnace. The sapphire windows shown are the windows of the sample cell,
and the sample is confined to the region between them. Argon gas fills the
two end sections of the furnace between the sapphire and calcium fluoride
windows. The beam entering the "optical tank'' is deflected toward a White-
cell arrangement, in which the beam is reflected many times between two
mirrors.

The arrangement by Simmons et al. [7-4], shown in Figure 7-5,
permits measurements of hot gas samples that are not isothermal. The
furnace is partitioned into sections which can be individually controlled from
room temperature to 1200K. The actual gas temperature is measured by
thermocouples in the cell.

The combination of cell and flowing gas system has the potential of
attaining higher temperatures. The arrangement as used by Nelson [7-5] is

shown in Figure 7-6.

The use of burners goes back to the last century when spectroscopy
started. These burners iBunsen, Meeker, etc.) are readily available as
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Figure 7-3. Multiple pass arrangement used by
Herget et al. [7-2].
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